Western Unconfined Aquifer 10 MGD from 3 High Capacity Wells Deep Aquifer Impacts

Western Unconfined Aquifer 10 MGD from 3 High Capacity Wells Shallow Aquifer Impacts

WATER SUPPLY Alternative 4 – Multiple Source

\$319 MILLION

- New treatment at existing deep aquifer wells
- New treatment for quarry water from multiple quarries
- New unconfined deep aquifer wells
- New solarium dolomite wells
- Add shallow wellfield South of Waukesha near Vernon Marsh and along the Fox River

WATER SUPPLY ALTERNATIVE 5 – LAKE MICHIGAN AND SHALLOW AQUIFER

- Supply pipeline from Lake Michigan supplier to Waukesha
- New water pump station
- Return flow pump station at Waukesha wastewater plant
- Return flow pipeline
- Add shallow wellfield South of Waukesha near Vernon Marsh and along the Fox River
- New central treatment plant

Water Supply Alternative 6 – Lake Michigan

\$164 MILLION

- Supply pipeline from Lake Michigan supplier to Waukesha
- New water pump station
- Return flow pump station at Waukesha wastewater plant
- Return flow pipeline

Municipalities Within the Waukesha Water Service Area

Return Flow Location

Existing Base Flow in Underwood Creek ~ 3 cfs

Underwood Creek - Existing Base Flow with additional Return Flow ~ 23 cfs

WATER SUPPLY EVALUATION CRITERIA

Summary of Water Supply Alternatives Evaluation

	Major Criteria				
Water Supply Alternatives	Environmental	Public Health	Long-Term Sustainability	Implementability	
1. Deep and shallow aquifers		\bullet	\bullet	•	
2. Shallow aquifer and riverbank inducement	lacksquare	\bullet	\bullet	•	
3. Unconfined deep aquifer	igodol	\odot	\bullet	•	
4. Multiple sources	igodol	ightarrow	ightarrow	•	
5. Lake Michigan and shallow aquifer	ullet	0	0	•	
6. Lake Michigan with return flow to Underwood Creek	\odot	\odot	0	0	

- No adverse impact 0 \odot
- Moderate adverse impact
- Minor adverse impact •
- Significant adverse impact

SUMMARY OF WATER SUPPLY COSTS

Water Supply Alternative Cost Estimates

Water Supply Alternative	Capital Costª (\$ million)	Annual Operation/Maintenance Cost (\$ million)	20 yr Present Worth Cost (\$ million, 6%)	50 yr Present Worth Cost (\$ million, 6%)
Deep and shallow aquifers	189	7.2	272	302
Shallow aquifer and riverbank inducement	184	7.4	269	301
Unconfined deep aquifer	228	6.6	304	332
Multiple sources	319	7.9	410	444
Lake Michigan and shallow aquifer	238	7.5	324	356
Lake Michigan with return flow to Underwood Creek	164	6.2	235	262

^aIncludes direct construction cost, contractor administrative costs (insurance, bonds, supervision etc), 25% contingency, and costs for permitting, legal, engineering, administrative.

Monthly Rate Comparison

Cost per Month

Public Service Commission Oversight

- Approves Construction Projects
- Sets Water Rates
- Determines Service and Billing Procedures
- Stipulates Record Keeping Requirements
- Sets Engineering Standards
- Requires Meter Accuracy
- Establishes Standards for Water Quality and Adequacy of Supply

GROUNDWATER LEAVES THE REGION AND GOES TO THE OCEAN.

LAKE MICHIGAN WATER IS RECYCLED AND IS SUSTAINABLE

WHAT IS THE SCHEDULE MOVING FORWARD?

TIMELINE

Next Steps

QUESTIONS?

