Underwood Creek

Water Quality Baseline Report

2003-2005

Water Quality Research Department Milwaukee Metropolitan Sewerage District

October 2008

Underwood Creek

MMSO

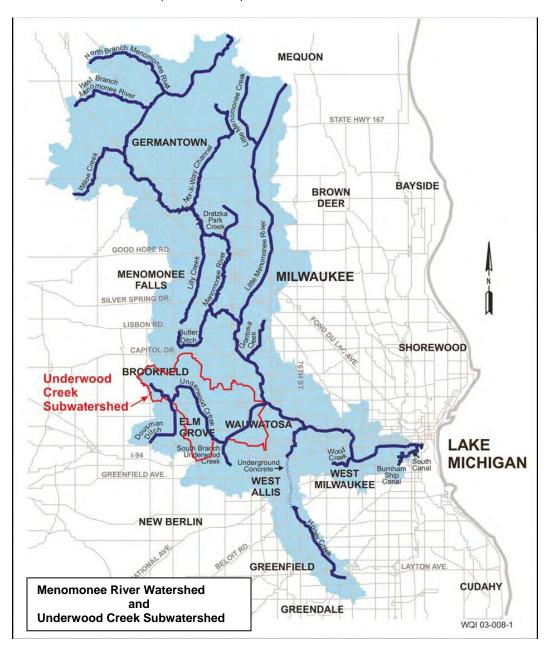
Water Quality Baseline Report 2003-2005

By

Milwaukee Metropolitan Sewerage District Water Quality Research Department

Contributing Authors

Meredith L. Welling Mark D. Munzenmaier Ken Wardius Susan R. Sutherland Eric Waldmer Christopher Magruder Jean Bourne


Graphics Support

Bob Kuehn

Executive Summary

Underwood Creek (UC) is an 8.0 mile perennial stream that is tributary to the Menomonee River; the Menomonee River is tributary to Lake Michigan. The creek's major tributaries are Dousman Ditch (2.6 mile length) and the South Branch of Underwood Creek (1.1 mile length) (SEWRPC 2008). The Underwood Creek subwatershed comprises about 15% of the Menomonee River watershed (HNTB 2006).

The Underwood Creek sub-watershed is an urban watershed that drains approximately 19.9 square miles (SEWRPC, Nov. 2000), and includes portions of the Cities of Brookfield,

Milwaukee, New Berlin, Wauwatosa, and West Allis, the Town of Brookfield and the Village of Elm Grove.

The annual peak streamflow in Underwood Creek (USGS gaging station data at Wauwatosa) ranges from 320 to 7500 cubic feet per second based on flows for the years 1975 to 2006. Future flow increases from 0 to 5 % are expected along Underwood Creek (based on 2020 land use conditions, 100 year flows) (MMSD 2000).

Much of Underwood Creek is channelized with concrete lining and has been diverted from its

Underwood Creek, concrete lined and straightened channel

original course. The drainage area is relatively small and is influenced by poorly to very poorly drained soils (SEWRPC, Feb. 2000). These types of soils affect not only the amount of runoff but also the rate. The perennial and intermittent streams in the watershed runoff from storm receive sewers. culverts, roadside swales, drainage ditches and drainageways (SEWRPC, Feb. 2000).

The mission of the Milwaukee Metropolitan Sewerage District (MMSD) is to cost effectively protect the water resources within its jurisdiction. The MMSD and

other governmental entities are working to reduce the risk of serious

damage caused by flooding to homes, businesses, and people while incorporating environmentally sound best management practices for stormwater and flood management.

Among natural disasters, flooding is the leading cause of fatalities and property damage in the United States (MMSD 2000). Bridges and culverts in the Underwood Creek watershed can cause constrictions resulting in backwater effects and creating an upstream floodland area (SEWRPC Feb. 2000). The MMSD estimated the number of flooded structures projected from 2020 land use development conditions based on a one percent probability storm (100 year flood) at 58 flooded structures. Street and yard flooding have also occurred in the watershed (SEWRPC Feb. 2000). Using the same criteria, MMSD estimated the total damages at \$2,075,000 (MMSD 2000).

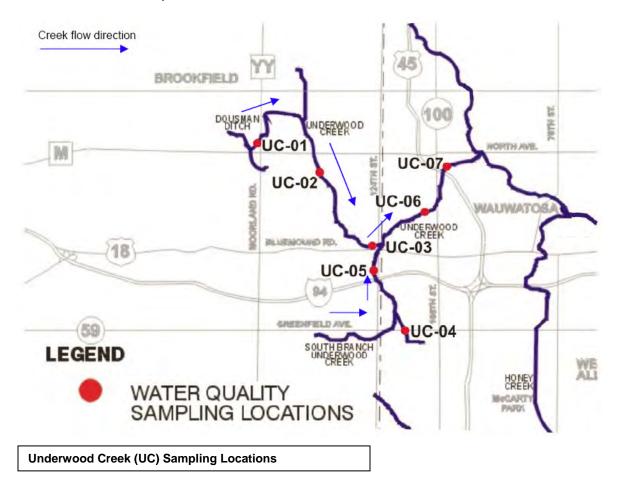
The MMSD and other governmental entities are working to reduce the risk of serious damage caused by flooding to homes, businesses, and people. The Underwood Creek Rehabilitation Project comprises a portion of a comprehensive approach for flood management by the MMSD. The MMSD seeks to provide a permanent, reliable, and cost-effective solution to reducing the risk of flooding problems within its jurisdiction (Lau 2005) and to improve the habitat and ecological value of its water resources (HNTB 2006).

The entire watershed must be examined when looking for solutions to reduce the risk of flooding, and excessive stormwater runoff must be limited as much as possible. Channel alterations to Underwood Creek have resulted in increased peak discharges and channel velocities during periods of intense rainfall in the watershed (MMSD 2005). The design and installation of a floodwater storage facility on the Milwaukee County Grounds by MMSD will help to moderate flooding conditions in the Menomonee River (MMSD 2005). The project also provided an opportunity to rehabilitate a portion of Underwood Creek through removal of concrete channel lining, and development of a replacement bioengineered channel that provides desirable aesthetic habitat, environmentally friendly stream restoration, and public safety improvements (MMSD 2005). The principal goals of the Underwood Creek Rehabilitation and Flood Management Project are to meet the following criteria:

- Develop stable channel sections using an environmentally sensitive and aesthetically acceptable channel design and lining materials that are acceptable to the WDNR.
- Provide aquatic habitat appropriate for the flow regime that contains suitable meanders, pools and riffles, and provide appropriate vegetation along the channel banks using native plant materials.
- Provide assurance that flood damages will not occur along Underwood Creek during the one-percent probability flood (100 year) event, and that appropriate peak discharges will be diverted to the Milwaukee County Grounds flood management facility.
- Develop a channel design with acceptable short and long-term maintenance requirements and costs; and acceptable public safety measures (MMSD 2005).

This project will lessen the impact of Underwood Creek on the Menomonee River both from an environmental and a flood management perspective.

Water quality monitoring in Underwood Creek began in May of 2003, the survey encompasses 2 sites on the south branch and 5 sites on the mainstem (MMSD 2003). Surface water quality


MMSD Water Quality Research Sampling Van

monitoring proposed was on Underwood Creek to gather data before, during, and after flood and stormwater management projects. The data gathered will also be utilized to evaluate the impact that Underwood Creek has on the Menomonee River. One of the main concerns is high historic and current fecal coliform bacteria numbers at a Menomonee River water quality site located downstream of the Underwood Creek confluence (N. 70th Street just south of State Street, RI-09). Data collected before construction and remediation projects occur will provide valuable baseline data that will characterize water quality in Underwood Creek. Data collected during construction and

remediation projects will allow the MMSD to assess any changes in water quality due to these activities. Data collected after project completion will facilitate the assessment of any water

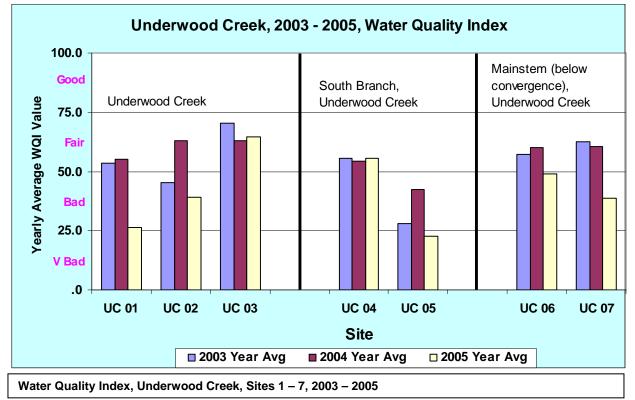
quality improvements as a result of flood and stormwater management projects and will help to ascertain the effectiveness of these efforts.

The MMSD Underwood Creek survey consists of 7 single depth sampling locations with each site being designated by UC and a number. The MMSD Technical Services Division and the Water Quality Research (WQR) Department determined site position. These sites were chosen based on accessibility and location within the watershed. Samples for several dozen variables are collected and analyzed.

Site Number	Location	Other
UC-01	Pilgrim Road in Wirth Park	mainstem
UC-02	Lilly Road & Marcella Street	mainstem
UC-03	124th Street & Bluemound Road by UPS	mainstem
UC-04	116th Street & Greenfield Avenue	south branch
UC-05	~121 st Street & Underwood Creek Parkway Krueger Park	south branch
UC-06	115th Street and Underwood Creek Parkway	mainstem
UC-07	107th Street & Fisher Parkway	mainstem

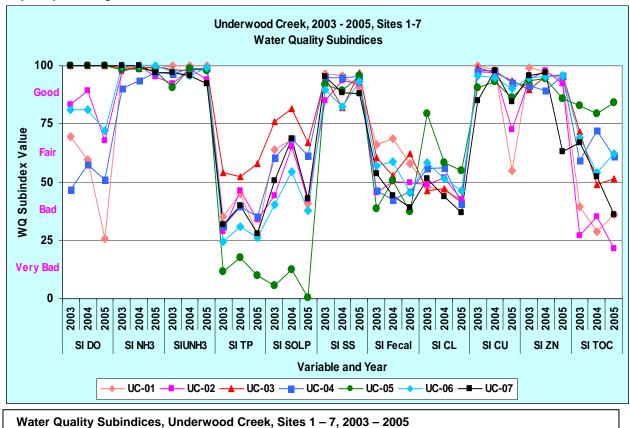
Some parameters, including dissolved oxygen, suspended solids, un-ionized ammonia, nitrate, nitrite, chloride, mercury, copper, lead, zinc, cadmium, chromium, and nickel were at levels conducive to good water quality with values below recommended maxima or state criteria. At

other times, conventional pollutants, including fecal coliform bacteria, total phosphorus, soluble phosphorus, TKN, and to a lesser extent, dissolved oxygen exceeded State of Wisconsin Criteria or recommended maximums. Toxic pollutants (PAH's, mercury) were present in Underwood Creek. PAH's were present at all sites in all years. Mercury was also present at all sites in all years; however, at no time did the levels exceed State of Wisconsin chronic criteria. MMSD's Water Quality Research Department has developed a Water Quality Index (WQI) that is used as an assessment tool for evaluating river and creek water guality. Based on nationally recognized indices and established water quality criteria, eleven variables are mathematically calculated into subindex and final index values and translated into descriptive categories, i.e., excellent, good, fair, bad, very bad, and worst water quality. The raw data for each variable are transformed to comparable scales so that no one variable is more important than another, yielding a subindex value. The subindex value is then ranked: good, fair, bad, etc. The final index value is a combination (geometric mean) of all subindices. Note that as the index values increase, water quality improves. The variables used to calculate the WQI are: dissolved oxygen, total phosphorus, soluble phosphorus, ammonia, un-ionized ammonia, fecal coliform bacteria, suspended solids, total organic carbon, chloride, copper, and zinc. These variables are known to cause stress to aquatic life, are by-products of human activity, and can be measured against known criteria. A more detailed explanation of the MMSD WQI can be found in: MMSD Development of a Water Quality Index for the Milwaukee Metropolitan Sewerage District, 1994.


The WQI was used to evaluate the Underwood Creek water quality database. The annual average WQI values are presented below. The MMSD WQI regularly classified Underwood Creek as either "fair" or "bad" water quality.

	Underwood Cre		Underwood Creek UC So	UC Sout	h Branch	UC Mainstem – Below convergence		
Year	UC-01	UC-02	UC-03	UC-04	UC-05	UC-06	UC-07	
2003	53.32	45.07	70.23	55.46	27.86	57.04	62.57	
2004	55.29	63.15	62.96	54.41	42.42	60.10	60.61	
2005	26.45	39.20	64.62	55.70	<mark>22.60</mark>	49.12	38.75	
3 yr avg	45.02	49.14	65.94	55.19	30.96	55.42	53.98	
	Bad	Bad	Fair	Fair	Bad	Fair	Fair	
			Best		Worst			
			Site		Site			
Index Key: Excellent = 100, Good = 75-99, Fair = 50-74, Bad = 25-49, Very Bad = 1-24, Worst = <1								

2003-2005 Underwood Creek Annual Average WQI Values.


Of the 21 annual WQI averages produced, 62% were ranked as "fair", 33% were ranked as "bad" and 5% were ranked as "very bad". No annual final WQI numbers resided in the "excellent" or "worst" categories. UC-03 was the best ranked site for the three year period (3 year average = 65.94) and the WQI consistently fell into the "fair" water quality category; while UC-05 was the worst ranked site (3 year average = 30.96) and habitually displayed WQI values in the "bad" and "very bad" categories. The year 2004 was the best year on average with 6 of the 7 sites exhibiting WQI values in the "fair" category. Additionally, the WQI for 5 of the 7 Underwood Creek sites worsened in 2005; with 4 of these falling from the "fair" to "bad" category and 1 site falling from the "bad" to the "very bad" category. Consequently, the year 2005 was the worst year on average.

A graphical representation of the annual average (2003 - 2005) WQI values for all sites on Underwood Creek can be found below. Again, the best year across all sites was 2004, followed by 2003. Generally, the year 2005 experienced degradation in the WQI at all sites when

compared to the previous 2 years except UC-04. This site remained very consistent, exhibiting a slight improvement in the WQI in 2005. Based on the annual averages, water quality improves in the upper reaches of Underwood Creek as it heads downstream; water quality becomes worse when moving downstream in the south branch of Underwood Creek; and with the exception of the year 2005, improves slightly in the lower reaches (mainstem) when moving downstream.

The figure below illustrates the predominant individual subindex variables contributing to lower WQI values. This figure should only be utilized for examining how the subindex variables reacted as a group and not for the determination of specific data points. For all sites, generally, total phosphorus (TP), soluble phosphorus (SOLP), fecal coliform bacteria (fecal), chlorides (CL), and to a lesser extent total organic carbon (TOC) drag the final WQI value downward toward poorer water quality. Conversely, the subindices for ammonia (NH3), un-ionized ammonia (UNH3), suspended solids (SS), copper (CU) and zinc (ZN) were consistently ranked as "good" with copper and zinc dropping to "fair" on a few occasions. Dissolved oxygen (DO) generally displayed subindex values in the "good" and "fair" ranges and on the two occasions that it did receive a "bad" ranking, it almost certainly had a negative effect on the final WQI value. Total organic carbon (TOC) ranged from "good" to "bad" water quality with one "very bad" subindex value. On a site to site basis, ammonia, un-ionized ammonia, suspended solids, copper, and zinc remained generally steady. Dissolved oxygen, total phosphorus, soluble phosphorus, fecal coliforms, and total organic carbon displayed more variability in the subindex

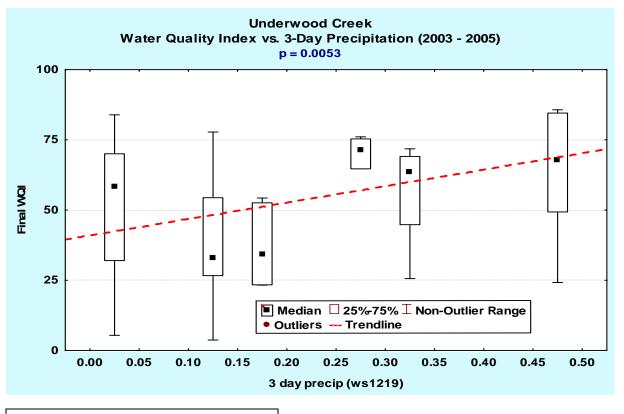
values. On a site by site basis, all subindices remained fairly consistent, never fluctuating out of its yearly ranking more than once.

Underwood Creek sites were also compared statistically using the software package - *Statistica*®. WQI data were utilized for this comparison. Statistically, water quality at UC-05 was significantly different from all other Underwood Creek sites, verifying the WQI's analysis and finding of the worst water quality of all sites examined. Water quality at UC-03 (best site by WQI analysis) was found to be significantly different from UC-01 and UC-02 but not significantly different from water quality at UC-04, UC-06, and UC-07. This is not surprising given the WQI results at these locations; UC-03, UC-04, UC-06, and UC-07 were the only sites ranking as "fair" water quality while the other Underwood Creek sites (UC-01, UC-02, and UC-05) were ranked as "bad" water quality.

The impact of rainfall was analyzed for the three year sampling period utilizing a linear correlation yielding the following results:

Suspended solids, log fecal coliform, copper, and zinc were all negatively impacted by rainfall (as rainfall increases, the WQI value for these variables deteriorates) and most likely the subsequent associated stormwater runoff. The concentrations of these variables in Underwood Creek increased with rainfall; this was a statistically valid correlation. The Wisconsin Department of Natural Resources estimates that within the State, approximately 40% of our streams and 90% of our inland lakes are degraded or threatened due to nonpoint source pollution or polluted stormwater runoff (WDNR 2001). Chlorides exhibited a positive correlation

(as rainfall increases, the WQI value for this variable improves). It is possible that precipitation is exhibiting a dilutional effect on chloride concentrations.


				<u> </u>				
	Spearman Rank Order Correlations							
	MD pair	MD pairwise deleted						
	Marked	Marked correlations are significant at p <.05000						
	Valid Spearman t(N-2) p-level							
Pair of Variables	Ν	R						
SIDO & 3 day precip (ws1219)	168	-0.026203	-0.33772	0.736002				
SITNH3 & 3 day precip (ws1219)	168	-0.027904	-0.35965	0.719564				
SIUNNH3 & 3 day precip (ws1219)	168	0.005095	0.06565	0.947736				
SITP & 3 day precip (ws1219)	168	-0.110387	-1.43098	0.154317				
SISOLP & 3 day precip (ws1219)	168	-0.075164	-0.97117	0.332876				
SISS & 3 day precip (ws1219)	168	-0.156139	-2.03669	0.043270				
SILGFEC & 3 day precip (ws1219)	168	-0.481508	-7.07840	0.000000				
SICHLOR & 3 day precip (ws1219)	168	0.305971	4.14075	0.000055				
SICU & 3 day precip (ws1219)	168	-0.331177	-4.52210	0.000012				
SIZN & 3 day precip (ws1219)	168	-0.344994	-4.73568	0.000005				
SITOC & 3 day precip (ws1219)	168	0.044917	0.57930	0.563174				
FNLNDX & 3 day precip (ws1219)	166	-0.081049	-1.04136	0.299239				

2003-2005 Underwood Creek Water Quality Index vs. 3-Day Precipitation.

WS = rain gauge station SI = Subindex

Appendix D contains a variable abbreviations list

A statistically significant correlation was not found between the final WQI and 3-day precipitation and this is illustrated in the graph below. Again, the trendline illustrated in the Figure below was not significant and is the exact opposite of what one would expect to see with increasing rainfall amounts. This is most likely due to the limited amount of precipitation greater than 0.25 inches received during the study period (on or preceding sampling dates). These were marginal events, not typical of a more significant rainfall that would generate a greater load of stormwater to the creek. Of the 24 sampling dates, only 3 had a 3-day average precipitation of 0.25 or greater.

Water Quality Index vs. 3-Day Precipitation

Tremendous changes have begun within the Underwood Creek subwatershed to curb the impact of flooding and pollution on the Menomonee River. The design and installation of a floodwater storage facility on the Milwaukee County Grounds by MMSD will help to reduce the risk of flooding conditions in the Menomonee River (MMSD 2005).

Milwaukee County Grounds: habitat restoration emphasizes replanting trees, shrubs and plants with native species

More specifically, this project will help to reduce the risk of current flooding in downtown Wauwatosa, western portions of Milwaukee, and the Menomonee Valley by diverting floodwater from Underwood Creek during major rain events.

The project also provided an opportunity to rehabilitate a portion of Underwood Creek through removal of concrete channel lining, and development of a replacement bioengineered channel that provides desirable esthetic habitat, environmentally friendly stream restoration, and public safety improvements (MMSD 2005). Additionally, a partnership between MMSD and the City of Brookfield allowed the purchase of conservation easements that will result in floodwater being naturally stored, protecting property near the river, reducing future flood risk, and protecting water quality. Water quality monitoring will continue for an additional 3 to 5 years as this project attains full completion to substantiate improvements to the water quality of Underwood Creek as a result of MMSD's efforts.

Table of Contents

	Fage
EXECUTIVE SUMMARY	
W CONTRACTOR IN THE OWNER DEPENDENCE IN THE PROPERTY IS A DEPENDENCE OF THE PROPERTY OF THE PR	aucor or
LIST OF TABLES AND FIGURES	xii
INTRODUCTION	110
Background	
MMSD's Interest and Involvement	1
Additional Projects and Studies	
Water Quality Monitoring	
Water Quanty Monitoring	10
METHODS	11
Sampling Locations	
Sampling Schedule and Variables	16
Sampling Dates	16
Field Sampling and Measurements	17
RESULTS/DISCUSSION	
Water Quality Index (WQI) Evaluation	18
Underwood Creek Site 1	
Underwood Creek Site 2	
Underwood Creek Site 3	
Underwood Creek Site 4	IN A DOMESTIC AND A D
Underwood Creek Site 5 Underwood Creek Site 6	AT MALE AND A SALE AND A
Underwood Creek Site 6	
Precipitation	CALC: A PERSON AND A PERSON AND A
Water Quality Trends – Dissolved Oxygen	
Water Quality Trends – Dissolved Oxygen	
Water Quality Trends – Suspended Solids	
Water Quality Trends – Phosphorus	
Water Quality Trends – Nitrogen Series	
Un-ionized Ammonia	
Total Kjeldahl Nitrogen (TKN)	
Nitrates and Nitrites	
Water Quality Trends – Specific Conductance	53
Water Quality Trends – Chloride	
Water Quality Trends – Toxic Pollutants	
PAH's	58
Mercury	60
Water Quality Trends – Heavy Metals	62
Copper	
Lead	_
Zinc	
Cadmium	
Chromium	
Nickel	72

Page

SUMMARY	
REFERENCES	
APPENDIX A (Variables/Samples)	
APPENDIX B (Hydrolab® Data)	
APPENDIX C (Precipitation and Discharge Data)	
APPENDIX D (Variable Abbreviations)	
APPENDIX E (Summary Statistics)	
APPENDIX F (WQI Statistical Comparison Utilizing an Independent T-te	əst)147

List of Figures and Tables

Page

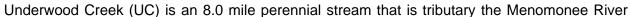
Figure No.

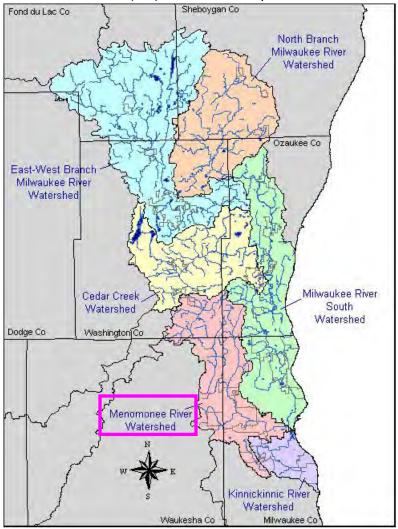
1.	Menomonee River General Watershed Map	.1
2.	Milwaukee County Grounds, Flood Management Basin	.5
3.	Surface Water Quality Sampling Locations	.11
4.	Water Quality Index, Sites 1 - 7, 2003 - 2005	
5.	Water Quality Subindices, Sites 1 – 7, 2003 – 2005	
6.	UC-01, Water Quality Subindices, 2003 -2005	
7.		. 22
	UC-02, Water Quality Subindices, 2003 -2005	
	Water Quality Index, 2003 – 2005, UC-02	
	UC-03, Water Quality Subindices, 2003 -2005	
	. Water Quality Index, 2003 – 2005, UC-03	
	UC-04, Water Quality Subindices, 2003 -2005	
	. Water Quality Index, 2003 – 2005, UC-04	
	UC-05, Water Quality Subindices, 2003 -2005	
	. Water Quality Index, 2003 – 2005, UC-05	
	UC-06, Water Quality Subindices, 2003 -2005	
	. Water Quality Index, 2003 – 2005, UC-06	
	UC-07, Water Quality Subindices, 2003 -2005	
	. Water Quality Index, 2003 – 2005, UC-07	
20.	. Water Quality Index vs. 3 – Day Precipitation	. 34
21.	Dissolved Oxygen Trends, Underwood Creek, 2003 – 2005	. 35
	. Underwood Creek, 2003 – 2005, Dissolved Oxygen	
	Log Fecal Coliform Trends, Underwood Creek, 2003 – 2005	
	. Underwood Creek, 2003 – 2005, Fecal Coliform Bacteria	
25.	. Suspended Solids Trends, Underwood Creek, 2003 – 2005	. 39
26.	Underwood Creek, 2003 – 2005, Suspended Solids	.40
27.	. Total Phosphorus Trends, Underwood Creek, 2003 – 2005	. 41
	Underwood Creek, 2003 – 2005, Total Phosphorus	
29.	. Soluble Phosphorus Trends, Underwood Creek, 2003 – 2005	.43
30	Underwood Creek, 2003 – 2005, Soluble Phosphorus	. 44
31.	. Un-ionized Ammonia Trends, Underwood Creek, 2003 – 2005	. 45
	Underwood Creek, 2003 – 2005, Un-ionized Ammonia	
33.	. Total Kjeldahl Nitrogen Trends, Underwood Creek, 2003 – 2005	. 48
	. Underwood Creek, 2003 – 2005, Total Kjeldahl Nitrogen	
	Nitrate Trends, Underwood Creek, 2003 – 2005	
	Underwood Creek, 2003 – 2005, Nitrate	
	Nitrite Trends, Underwood Creek, 2003 – 2005	
	. Underwood Creek, 2003 – 2005, Nitrite	
	Specific Conductance Trends, Underwood Creek, 2003 – 2005	
	Underwood Creek, 2003 – 2005, Specific Conductance	
	. Chloride Trends, Underwood Creek, 2003 – 2005	
	. Underwood Creek, 2003 – 2005, Chloride . PAH Trends, Underwood Creek, 2003 – 2005	
	. Total PAH Trends by Site . Mercury Trends, Underwood Creek, 2003 – 2005	
	. Underwood Creek, 2003 – 2005, Mercury	
40	. Onderwood Greek, 2003 – 2005, Mercury	.01

Figure No.

47. Copper Trends, Underwood Creek, 2003 – 2005	
48. Underwood Creek, 2003 – 2005, Copper	
49. Lead Trends, Underwood Creek, 2003 – 2005	And and any and and and any and any and any and any and any any any any
50. Underwood Creek, 2003 – 2005, Lead	
51. Zinc Trends, Underwood Creek, 2003 – 2005	
52. Underwood Creek, 2003 – 2005, Zinc	
53. Cadmium Trends, Underwood Creek, 2003 - 2005	
54. Underwood Creek, 2003 – 2005, Cadmium	
55. Chromium Trends, Underwood Creek, 2003 – 2005	
56. Underwood Creek, 2003 – 2005, Chromium	
57. Nickel Trends, Underwood Creek, 2003 – 2005	
58. Underwood Creek, 2003 – 2005. Nickel	

Table No.


1.	Construction Schedule	6
2.	Site Designations and Locations	11
3.	2003 -2005 Annual Average Water Quality Index Values	18
4.	Water Quality Index: Subindices and Annual Averages	31
5.	Monthly, Average and Total Precipitation (Inches) - Milwaukee Mitchell Field	32
6.	Underwood Creek Total Monthly, Average, and Total Precipitation (Inches)	32
7.	2003 - 2005 Underwood Creek Water Quality Index vs. 3-day Precipitation	33


Page

Page

INTRODUCTION

Background

which discharges to Lake Michigan. The Underwood Creek sub-watershed comprises about 15% of the Menomonee River watershed (HNTB 2006). It is an urban watershed that drains approximately 19.9 square miles (SEWRPC, Nov. 2000). The Underwood Creek subwatershed includes portions of the Cities of Brookfield, Milwaukee. New Berlin, Wauwatosa, and West Allis, the Town of Brookfield and Village of Elm Grove. the Perennial streams that are tributary to Underwood Creek include Dousman Ditch, the North branch of Underwood Creek, the South Branch of Underwood Creek, and several unnamed tributaries to Dousman Ditch (SEWRPC, Feb. 2000). Dousman Ditch joins Underwood Creek in Franklin Wirth Park (City of Brookfield); the creek then flows through Brookfield and into Elm The South Branch of Grove. Underwood Creek joins the mainstem just east of Elm Grove; the mainstem then flows through the City of Wauwatosa to its confluence with the Menomonee River southwest of the intersection of North Avenue and the Menomonee River Parkway

(USGS 2000). Lake Evinrude, located in the Milwaukee County Zoo drains into the South Branch of Underwood Creek (MMSD WQI-03-009-1). The source of Underwood Creek is a large wetland located in the northwestern part of the subwatershed in the City of Brookfield (SEWRPC, Nov. 2000).

The Underwood Creek subwatershed is situated approximately 720 feet to 940 feet above sea level. (SEWRPC Feb. 2000). Some wetlands do exist in the watershed. In 1990, there were approximately 271 acres of wetlands in the Dousman Ditch subwatershed, and 439 acres in the Underwood Creek subwatershed comprising about 12 percent and 9 percent of the area, respectively (SEWRPC Feb. 2000). Natural storage areas do exist along most of Underwood

Creek (MMSD 2000) and would be considered primary or secondary environmental corridors. The annual peak streamflow in Underwood Creek (USGS gaging station data at Wauwatosa) ranges from 320 to 7500 cubic feet per second based on flows for the years 1975 to 2006. Future flow increases from 0 to 5 % are expected along Underwood Creek (based on 2020 land use conditions, 100 year flows) (MMSD 2000).

Land use is one factor that can greatly affect the quality of a creek or river by means of stormwater runoff. Land use also is a major contributor to the quantity of stormwater runoff. The Underwood Creek subwatershed is approximately 84% developed (HNTB 2005). Land use is primarily single density residential (SEWRPC 1995). Urban land uses are expected to cover about 81 and 86 percent of the Dousman Ditch and Underwood Creek subwatersheds (SEWRPC Feb. 2000). Stormwater runoff from lawns, rooftops, streets and driveways, parking lots, and storage areas contribute sediment, nutrients, organic matter, oil and grease, bacteria, metals, and toxic organic substances to streams (SEWRPC Feb. 2000). Documented toxic spills in Underwood Creek include oil, concrete, wash water, gasoline, and an unknown substance

(SEWRPC 1995). Urban development generally increases stormwater flow rates and runoff volumes and the loadings of some (SEWRPC Feb. pollutants 2000). Much of Underwood Creek is channelized with concrete and has been diverted from its original course. The drainage area is relatively small and is influenced by poorly to very poorly drained soils (SEWRPC, Feb. 2000). These soil types affect not only the amount of runoff but also the rate. One would anticipate that a significant

Sections of Underwood Creek in Milwaukee County were lined with concrete in the 1960s and 1970s for flood management. Because of concrete lining, the aquatic habitat is lacking and the water warms more easily, making it harder for fish and aquatic organisms to survive. However, concrete lining can help protect local area homes and businesses from flooding. Water resource tradeoffs like this are common in highly urbanized environments.

(MMSD Water Quality Initiative, Menomonee River Watershed: http://www.mmsd.com/wqi/menomonee_river_watershed.cfm)

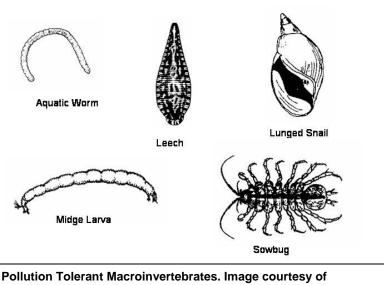
amount of runoff would be generated. The perennial and intermittent streams in the watershed receive runoff from storm sewers, culverts, roadside swales, drainage ditches and drainageways (SEWRPC, Feb. 2000). In 1975 there were 15 sewer flow relief devices that discharged into Underwood Creek, two from the City of Brookfield, five from the City of West Allis, and eight from the City of Wauwatosa (SEWRPC 1995). There are a number of point sources located on Underwood Creek via storm sewers or unnamed tributaries (1990 data); these include various school districts, industries, swimming pools, business other than industrial, a hospital, and a private household (SEWRPC 1995). There are sixteen permitted

industrial discharge points in Underwood Creek and three in Dousman Ditch (SEWRPC 1995). There is one abandoned landfill that was identified in 1990 by SEWRPC to be a potential pollution source located in the City of Brookfield (SEWRPC 1995). There were also several LUST (Leaking Underground Storage Tank) sites identified by SEWRPC to be potential sources of pollution located in the Cities of Wauwatosa, Brookfield, and West Allis (SEWRPC 1995). These sites may be permitted under the WPDES (Wisconsin Pollutant Discharge Elimination System). These factors contribute greatly to stormwater runoff quality and quantity and flooding

problems in the watershed.

Among natural disasters, flooding is the leading cause of fatalities and property damage in the United States (MMSD 2000). Bridges and culverts in the Underwood Creek watershed can cause constrictions resulting in backwater effects and creating an upstream floodland area (SEWRPC Feb. 2000). The Milwaukee Metropolitan Sewerage District (MMSD) estimated the number of flooded structures projected from 2020 land use development conditions based on a one percent probability storm (100 year flood) at 58 flooded structures. Street and yard flooding have also

Flooding


occurred in the watershed (SEWRPC Feb. 2000). Using the same criteria, MMSD estimated the total damages at \$2,075,000 (MMSD 2000). Flooding of Underwood Creek in 1997 and 1998 left all of downtown Elm Grove underwater and resulted in sewage backups, devastating businesses and causing some to leave entirely (Business Journal 2002), The City of Brookfield and the Village of Elm Grove are in the process of adopting stormwater management ordinances that regulate stormwater runoff from development new urban and redevelopment (SEWRPC Feb. 2000).

<image>

Potential sources of water pollutants in the Underwood Creek watershed

include stormwater runoff, sanitary sewer overflows, construction site erosion, streambank erosion, atmospheric contributions, and industrial material leaks and spills (SEWRPC Feb. 2000).

Underwood Creek is generally recommended for the following water and biological use objectives: upstream of Watertown Plank Road and the South Branch are recommended for warmwater forage fish and limited recreational use; downstream of Watertown Plank Road, it is recommended for limited aquatic life and limited recreational use; and Dousman Ditch is recommended for limited forage fish and limited recreational use (SEWRPC 1995). According to SEWRPC (1995), fish population and diversity are poor, there have been recorded fish kills,

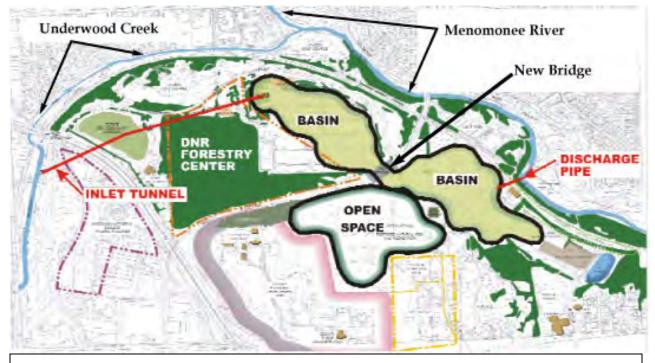
Pollution Tolerant Macroinvertebrates. Image courtesy of Michigan Environmental Education Curriculum Stream Monitoring. http://techalive.mtu.edu/meec/module05/images/Tolerant.jpg there are water quality problems with fecal coliforms and toxics, Hilsenhoff biotic the index resulted in a fair to poor rating and physical modifications to Underwood Creek were major. This was also the case for Dousman Ditch (note that no fish kills were reported and the biotic index was absent from the data). Portions of these streams were contaminated with bacteria from both human and animal waste sources. The bottom dwelling organisms were comprised of pollution tolerant species and were representative of poor water quality conditions (SEWRPC Feb. 2000). In general, SEWRPC (Feb. 2000) found

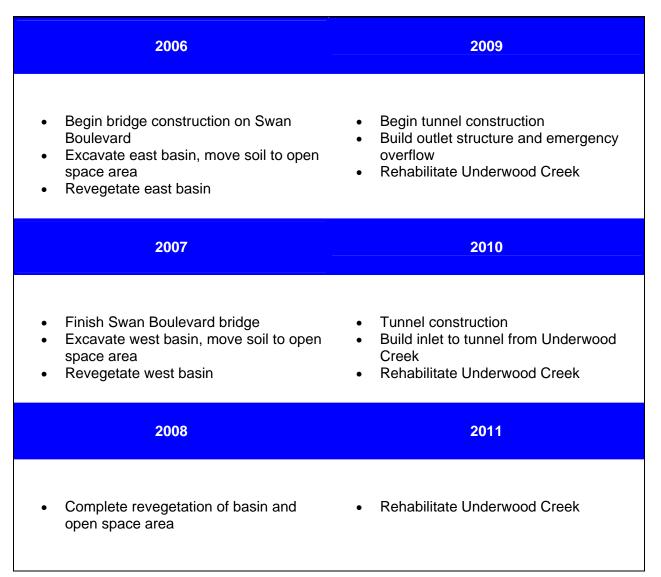
that the aquatic habitat was rated as fair to poor for most of the reaches of Dousman Ditch and Underwood Creek.

MMSD's Interest and Involvement

The MMSD and other governmental entities are working to reduce the risk of serious damage caused by flooding to homes, businesses, and people. The Milwaukee area experienced significant storms (up to 8 inches of rainfall) in 1997 and 1998, resulting in very serious flooding. Millions of dollars in damage was rendered and two young boys drowned in the Village of Elm Grove. The floods on Underwood Creek were the largest recorded in the 23 years that streamflow gages had been involved in data gathering (SEWRPC 2004). The City of Brookfield received a reported 11.75 inches of rain in a 24 hour period in August of 1998. The storms causing these rains resulted in considerable flooding in northeastern Waukesha County (SEWRPC 2004). The Underwood Creek Rehabilitation Project comprises a portion of a comprehensive approach for flood risk reduction by the MMSD. The MMSD seeks to provide a reliable and cost-effective solution to reducing the risk of flooding problems within its jurisdiction (Lau 2005) and to improve the habitat and ecological value of its water resources (HNTB 2006).

The entire watershed must be examined when looking for solutions to reduce the risk of flooding and excessive stormwater runoff must be limited as much as possible. Channel alterations to Underwood Creek have resulted in increased peak discharges and channel velocities during periods of intense rainfall in the Menomonee River (MMSD 2005). The design and installation of a floodwater storage facility on the Milwaukee County Grounds by MMSD will help to reduce the risk of flooding conditions in the Menomonee River (MMSD 2005). More specifically, this project will help to reduce current flooding risk in downtown Wauwatosa, western portions of




Figure 2: Milwaukee County Grounds, Flood Management Basin

Milwaukee, and the Menomonee Valley by diverting floodwater from Underwood Creek during major rain events and conveying it through a tunnel to a approximately 65 acre basin. Floodwater will be held in this basin until flooding conditions in the Menomonee River have lowered. The diverted Underwood Creek water will then be slowly released to the Menomonee River over a period of 3 to 4 days (MMSD 2006). The basin facility will store approximately 330 millions gallons of diverted flow from Underwood Creek. The project also provided an opportunity to rehabilitate a portion of Underwood Creek through removal of concrete channel lining, and development of a replacement bioengineered channel that provides desirable esthetic habitat, environmentally friendly stream restoration, and public safety improvements (MMSD 2005). The principal goals of the Underwood Creek Rehabilitation and Flood Management Project are to meet the following criteria:

- Develop stable channel sections using an environmentally sensitive and aesthetically acceptable channel design and lining materials that are acceptable to the WDNR.
- Provide aquatic habitat appropriate for the flow regime that contains suitable meanders, pools and riffles, and provide appropriate vegetation along the channel banks using native plant materials.
- Provide assurance that flood damages will not occur along Underwood Creek during the one-percent probability flood (100 year) event, and that appropriate peak discharges will be diverted to the Milwaukee County Grounds flood management facility.

• Develop a channel design with acceptable short and long-term maintenance requirements and costs; and acceptable public safety measures (MMSD 2005).

This project will lessen the impact of Underwood Creek on the Menomonee River both from an environmental and flood management perspective.

Table 1: Construction Schedule (MMSD. June, 2006)

Specifically, the Underwood Creek restoration component will provide public safety and improved aquatic habitat aspects. The project will create a more natural flow and provide pools that are cooler and deeper for aquatic life. The more natural flow will help to slow the moving water down; this will help with flooding and ultimately, public safety.

The construction phase of the Underwood Creek Floodwater Management Project will alter habitat for the Butler's garter snake, *Thamnophis butleri*, which is officially listed as a threatened

Wisconsin Distribution of the Butler's Garter Snake, Graphic Courtesy – http://www.dnr.state.wi.us/org/land/er/herps /snakes/butlersgrt.htm

Other potential biological impacts include; Orchard oriole, Forked aster, and Wafer ash, all of which have been observed on the County grounds. The oriole and aster are legally protected and the project would not impact the aster but would potentially impact nesting orioles if trees are removed in early summer (HNTB 2006). All disturbed areas would receive naturalized plantings.

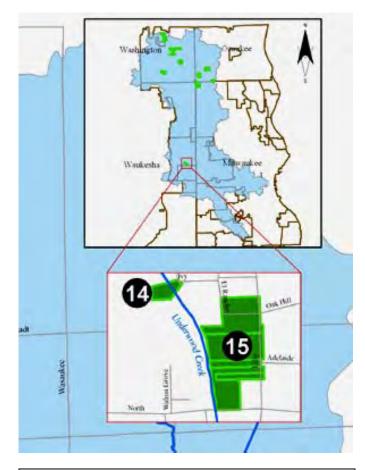
The primary physical impacts from the project involve; changes, placement, grade fill concrete lining removal, and flood management berm construction along Underwood Creek (HNTB 2006).

species by the Wisconsin Department of Natural Resources. The MMSD will remove the snakes in portions of the project where habitat will be altered. These snakes will be sustained until the areas have been restored. The WDNR has approved a conservation plan for the Butler's garter snake that contains a vegetation restoration plan, a snake monitoring and viability assurance plan. and a long-term habitat management plan. The WDNR has determined that the project is not likely to jeopardize the continued existence or recovery of the state population of these snakes or the whole plant-animal community of which they are a part. Additionally, the WDNR believes that the conservation measures being implemented will likely increase the Butler's garter snake population by increasing the acreage of suitable snake habitat and by improving habitat quality (MMSD. January 2006).

Butler's Garter Snake, Photo Courtesy – http://www.dnr.state.wi.us/org/land/er/factsheets/ herps/btgrsn.htm

Wetlands are an important economic and environmental feature to the landscape. Not only do they act as natural filters for pollutants but they are also biologically productive habitats,

Wetland. Photo Credit: http://vathena.arc.nasa.gov/curric/land/wetland/cattail.gif supporting many wildlife Economically. species. facilitate flood wetlands management and enhance property values by serving as an aesthetically pleasing space. open providing visual and sound barriers, and offering recreational opportunities (GLU 2007). Unavoidable impacts to approximately 4.67 acres of wetland habitat would occur as a result of the Underwood Creek Rehabilitation. requiring mitigation. Additionally, some wetlands along Underwood Creek would be temporarily impacted, but would be restored following rehabilitation.


Mitigation for all impacted wetlands is proposed with the Underwood Creek Corridor (HNTB

2006). Monitoring and management of the wetland mitigation area would be carried out in accordance to United States Army Corps of Engineers (USACE) guidelines (HNTB 2006). Mitigation for 2 of the impacted wetlands will include restoration at a ratio of 1.5 acres of restored wetland for every impacted wetlands acre. Other impacted by the Underwood Creek Rehabilitation would be restored at a ratio of 1.0 acre of restored wetland for every 1.0 acre of impacted wetland (HNTB 2006).

Wetland featuring a Great Blue Heron. Photo Credit: http://www.cooperativeconservationamerica.org/images/web%20heron%20wetland.JPG

Additional Projects and Studies

Greenseams Project: Conservation Easements on Underwood Creek.

#14 – Brookfield Knull Easement equaling 1.25 acres,

15 – Brookfield Underwood Creek Easement equaling 14.91 acres.

The MMSD has partnered with the City Brookfield of to purchase two conservation easements that include floodplain portions extensive of Underwood Creek, totaling 16.16 acres. These purchases will naturally store floodwater and help protect homes built near the river (www.mmsd.com, flood management, greenseams). These purchases are a component of the Greenseams Project which strives to preserve key lands containing water absorbing soils and preserve land along stream corridors. The program reduces future flood risk and protects water quality through nonstructural flood mitigation-a mechanism in which properties with hydric soils near major waterways are purchased and left undeveloped to maximize their watercapacities absorbing (Conservation October Fund. 2006) (see www.mmsd.com for more information).

Additional projects or studies that have been completed; are currently in place; or have been proposed are as follows:

Brookfield Flood Management
Project

 Village of Elm Grove Preliminary Engineering of Flood Control Alternatives

 MMSD Underwood Creek Restoration Project at Bluemound Road

 Friends of Milwaukee's Rivers – Channel and Floodplain Restoration Study

• U.S. Army Corps of Engineers Section 206 Study

• SEWRPC's Analysis of Alternative Plans for Removal of the Concrete Lining in Underwood Creek in the City of Wauwatosa. (HNTB 2006).

Water Quality Monitoring

Surface water quality (WQ) monitoring was proposed for Underwood Creek to gather important data that will facilitate the assessment of water quality. This data will be invaluable when determining the effectiveness of local stormwater management efforts and the documentation of surface water improvements due to these flood and stormwater management efforts.

Water quality monitoring in Underwood Creek began in May of 2003. The survey encompasses 2 sites on the south branch and 5 sites on the mainstem (MMSD 2003). Surface water quality monitoring was proposed on Underwood Creek

MMSD Water Quality Research Sampling Van

to gather data before, during, and after flood and stormwater management projects. The data gathered will also be utilized to evaluate the impact that Underwood Creek has on the Menomonee River. One of the main concerns is high historic and current fecal coliform bacteria numbers at a Menomonee River water quality site located downstream of the Underwood Creek confluence (near 70th and State collected Streets). Data before construction and remediation projects occur will provide valuable baseline data that will characterize water quality in Underwood Creek. Data collected during construction and remediation projects will allow the MMSD to assess any changes in water quality due to these activities. Data collected after

Collected samples on ice

project completion will facilitate the assessment of any water quality improvements as a result of flood and stormwater management projects and will help to ascertain the effectiveness of these efforts.

METHODS

Sampling Locations

The MMSD Underwood Creek survey consists of 7 single depth sampling locations (Figure 3, Table 2). The MMSD Technical Services Division and the Water Quality Research (WQR) Department determined site position. These sites were chosen based on accessibility and location within the watershed.

Table 2: Underwood Creek Surve	y: Site Designations and Locations

Site	Location	Other
Number		
UC-01	Pilgrim Road in Wirth Park	mainstem
UC-02	Lilly Road & Marcella Street	mainstem
UC-03	124th Street & Bluemound Road by UPS	mainstem
UC-04	116th Street & Greenfield Avenue	south branch
UC-05	~121 st Street & Underwood Creek Parkway Krueger Park	south branch
UC-06	115th Street and Underwood Creek Parkway	mainstem
UC-07	107th Street & Fisher Parkway	mainstem

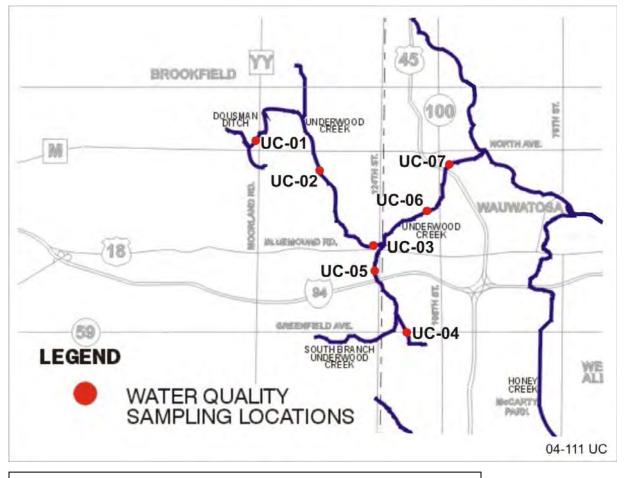


Figure 3: Underwood Creek (UC) Surface Water Quality Sampling Locations

Site UC-01 is located on the eastern edge of Wirth Park in Brookfield just west of Pilgrim below Road. and the confluence with Dousman Ditch. The samples are obtained from a pedestrian bridge adjacent to a parking lot and tot lot.

The water depth is typically less than 1 foot under normal baseline flows. The creek is typically choked with aquatic vascular plants in the summer. The creek is not channelized and the streambanks are vegetated at this site. The riparian area

UC - 01 surrounding UC-01 is mainly grass buffered space with a few trees; therefore the tree canopy is minimal. There is a parking lot immediately adjacent to the creek and Pilgrim Road is immediately east of the sampling location. The site is located within Wirth Park, in a low density residential neighborhood. The creek's substrate consists mostly of rocks, sediment, and attached algae. As previously noted, aquatic vascular plants are a large component of the substrate during the summer months.

Site UC-02 is located in Brookfield near the intersection of Lilly Road and Marcella Street.

The water depth is typically less than 1 foot under normal baseline flow conditions. The waterway is not channelized with concrete at this location and the streambanks are vegetated. The riparian area surrounding UC-02 consists mostly of trees with some shrubs and grassy areas. The existina canopy tree is estimated to be greater than percent. This site 70 is located in a low density

UC - 02

residential neighborhood. The creek's substrate consists mainly of rocks and sediment. Leaf litter input is high at this location and would be a constituent of the substrate at that time of year, also providing food and habitat for aquatic

macroinvertebrates.

UC-03 is located near the intersection of Bluemound Road and 124th Street. This site is also situated just upstream from the confluence of the south branch of Underwood Creek to the mainstem.

The water depth is again, normally less than 1 foot under baseline flow conditions. The creeks' substrate is comprised mainly of rocks and gravel. Underwood Creek becomes channelized with concrete immediately downstream of this site. The streambanks are vegetated, mainly with weeds

and deciduous plants. The riparian area is mainly grass buffered space. A tree canopy does not exist at this site. There is a parking lot, medical facility, package shipping company and major roadways immediately adjacent to the creek. The neighborhood is mainly industrial with some residential properties (approximately 25%). Construction and stream revitalization have occurred immediately downstream (east and just prior to the confluence with the south branch) of the location.

UC - 03

Before: Failing concrete streambank, downstream of UC-03

After: Revitalized streambank

UC-04 is located near Greenfield Avenue and 116th Street, immediately adjacent to Greenfield Park. This site is positioned on the south branch of Underwood Creek.

The water depth is typically less than 1 foot under normal baseline flow conditions. The area surrounding UC-04 is primarily trees with some scrub brush and grassy areas. Greenfield Park and a golf course are located immediately this site. south of The neighborhood is primarily residential and county park land. Underwood Creek flows

UC - 04 into an underground culvert immediately downstream of this location. The creeks substrate consists mostly of sediment with rocks and gravel and it is partially channelized with concrete. Leaf litter input is high in this location and a fairly extensive tree canopy is present (estimated at greater than 70 percent). There is a large screen preventing debris from entering into the underground culvert.

UC-05 is located downstream of site UC-04 near Underwood Creek Parkway and I-94 in Krueger Park. It is the last site sampled on the south branch before ioins with it the Underwood mainstem of Creek. Sampling occurs below the Milwaukee County Zoo outfall which serves as a drainage point for the Zoo's Evinrude (contains Lake stormwater, pumping from a deep well, and may receive cooling water and other fresh water) and other stormwater inputs.

The creek depth is less than 1 foot under normal baseline conditions. The area surrounding the creek consists primarily of trees and low growth

vegetation. There is a freeway, Krueger Park, and a parkway nearby. A limited tree canopy does exist in this area (estimated at approximately 50 percent) and would supply leaf litter to the creek in the fall. The creek substrate is concrete as it has been channelized in this area.

UC-06 is located just south of Watertown Plank Road on 115th Street and is the first sampling location after the confluence of Underwood Creek mainstem and the south branch of Underwood Creek.

The water depth at this site is typically less than 1/2 foot. The creek is situated within a concrete lined channel and attached algal growth in the summer months can be quite dense. The immediate area consists of industrial. residential. recreational. and some commercial land uses. The riparian area is mainly grass buffered space with some low growing shrubs and scrub trees. There are some trees along the concrete channel; however, none of these extends over the creek therefore, a tree canopy does not exist. Minnows and aquatic insects have been observed at this site.

UC - 06

UC-07 is located at approximately 107th and Fisher Parkway. The site is situated at the northwest corner of the Milwaukee County Grounds and is the last site sampled prior to the convergence of Underwood Creek with the Menomonee River. A USGS gaging station is located just upstream of this location. It is important to note that sampling occurs immediately downstream of a drop structure.

The water depth is typically less than 1 foot at this location. The riparian area consists of trees, low growing vegetation and grassy areas. There is

a minimal tree canopy in this location (estimated at approximately 10 percent). The immediate area is mostly residential, a large shopping

UC - 07: Note drop structure

mall is located approximately ½ mile to the north and there is a freeway and major urban thoroughfare upstream. The creek is channelized and the bottom substrate is comprised of concrete.

Sampling Schedule and Variables

Surface water quality monitoring is budgeted for 8 surveys per year. Highlights include:

- Sampling typically begins in April and ends in November (a complete listing of surface water quality sampling dates for Underwood Creek can be found in Appendix B).
- Underwood Creek sites are sampled concurrently with Honey Creek sites. This arrangement facilitates impact assessment of the two creeks on Menomonee River water quality.
- The variable list for the Underwood Creek monitoring effort is identical to other MMSD surface water quality surveys (see Appendix A).
- A total of 8 surveys are conducted, approximately one per month.
- The sampling and analyses for polyaromatic hydrocarbons (PAH's), mercury and heavy metals are conducted twice per year in conjunction with the routinely sampled variables. This sampling consists of 1 dry event, defined as 4 continuous days without significant precipitation and 1 wet event, defined as greater than ¼ inch precipitation in the Underwood Creek watershed. Precipitation data (for determining the occurrence of these events) is obtained from MMSD weather station WS 1219 located in Elm Grove at 13600 W. Juneau Boulevard. Precipitation data are located in Appendix C.
- Post project sampling is anticipated for 3 to 5 years to fully document water quality changes due to MMSD's efforts.

Sampling Dates

• 2003:

This was the first year that Underwood Creek surveys were conducted. Sampling began on May 5 and was concluded on October 27. In August and September samples were collected twice. A total of 8 surveys were conducted.

• 2004:

Sampling began on April 5 and concluded on November 2. A total of 8 surveys were conducted.

• 2005:

Sampling began on April 19 and concluded on November 14. A total of 8 surveys were conducted.

Individual Underwood Creek sampling dates organized by site can be found in Appendix B.

Field Sampling and Measurements

Field sampling typically commences in the morning hours and is completed by early afternoon. Field surface water quality measurements (temperature, pH, specific conductance and

Field Measurements: Hydrolab® MiniSonde 4a

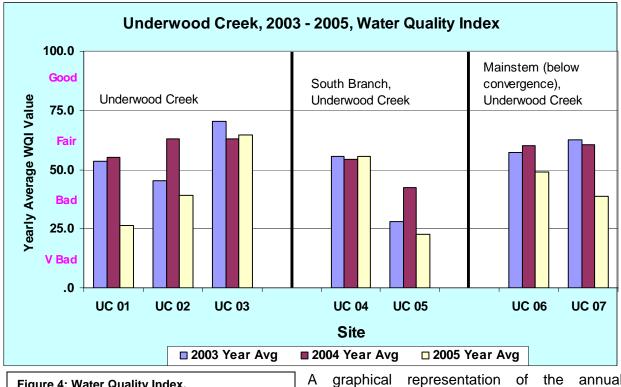
or other anomalies are noted. Water quality samples for other analyses are collected and transported to the MMSD Central Laboratory. Whenever possible, samples are obtained from mid-stream. Due to the shallow depth at most Underwood Creek sites, samples are either hand dipped or a bucket is utilized. Every effort is made to maintain sample integrity. Collected samples are stored on ice and kept in coolers until delivered to the MMSD Central Laboratory. dissolved oxygen) are obtained using the Hydrolab® or MiniSonde DataSonde units. The Hydrolab® Sonde unit is calibrated either the day before or the morning of the survey. The calibration information is maintained in a logbook. Field data for individual surveys can be found in Appendix B. General weather conditions as well as any unusual field conditions

Field Measurements: Panasonic Toughbook® laptop computer.

Samples are also kept in preserved bottles where applicable. Appropriate chain of custody forms are completed by Water Quality and Laboratory Staff. A trip blank is prepared in the morning prior to departing for the survey. A statistical data summary can be found in Appendix E.

RESULTS/DISCUSSION

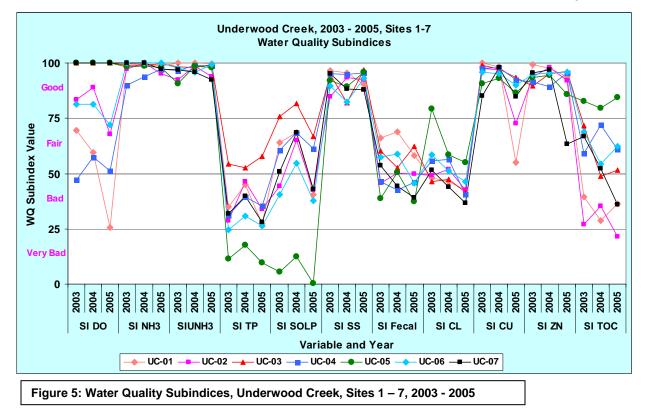
Water Quality Index (WQI) Evaluation


MMSD's Water Quality Research Department has developed a Water Quality Index (WQI) that is used as an assessment tool for evaluating river and creek water quality. Based on nationally recognized indices and established water quality criteria, eleven variables are mathematically calculated into subindex (SI) and final index values and translated into descriptive categories, i.e., excellent, good, fair, bad, very bad, and worst water quality. The raw data for each variable are transformed to comparable scales so that no one variable is more important than another, yielding a subindex value. The subindex value is then ranked: good, fair, bad, etc. The final index value is a combination (geometric mean) of all subindices. Note that as the index values increase water quality improves (Table 4). The variables used to calculate the WQI are: dissolved oxygen, total phosphorus, soluble phosphorus, ammonia, un-ionized ammonia, fecal coliform bacteria, suspended solids, total organic carbon, chloride, copper, and zinc. These variables are known to cause stress to aquatic life, are by-products of human activity, and can be measured against known criteria. A more detailed explanation of the MMSD WQI can be found in: MMSD Development of a Water Quality Index for the Milwaukee Metropolitan Sewerage District, 1994.

The WQI was used to evaluate the Underwood Creek water quality database. The annual average WQI values are presented below (Table 3).

	Underwood Creek			UC Sout	h Branch		instem – nvergence
Year	UC-01	UC-02	UC-03	UC-04	UC-05	UC-06	UC-07
2003	53.32	45.07	70.23	55.46	27.86	57.04	62.57
2004	55.29	63.15	62.96	54.41	42.42	60.10	60.61
2005	26.45	39.20	64.62	55.70	<mark>22.60</mark>	49.12	38.75
3 yr avg	45.02	49.14	65.94	55.19	30.96	55.42	53.98
	Bad	Bad	Fair	Fair	Bad	Fair	Fair
			Best Site		Worst Site		
	Index Key: Excellent = 100, Good = 75-99, Fair = 50-74, Bad = 25-49, <mark>Very Bad = 1-24</mark> , Worst = <1						

Table 3: 2003-2005 Underwood Creek Annual Average WQI Values.


In overall terms, most of the annual WQI average values generated for Underwood Creek for the years 2003 – 2005 fell into the "fair" to "bad" categories. Of the 21 annual WQI averages produced, 62% were ranked as "fair", 33% were ranked as "bad" and 5% were ranked as "very bad". No annual final WQI numbers resided in the "excellent" or "worst" categories. UC-03 was the best ranked site for the three year period (3 year average = 65.94) and the WQI consistently fell into the "fair" water quality category; while UC-05 was the worst ranked site (3 year average = 30.96) and habitually displayed WQI values in the "bad" and "very bad" categories. The year 2004 was the best year on average with 6 of the 7 sites exhibiting WQI values in the "fair" category. Additionally, the WQI for 5 of the 7 Underwood Creek sites worsened in 2005; with 4

of these falling from the "fair: to "bad" category and 1 site falling from the "bad" to the "very bad" category. Consequently, the year 2005 was the worst year on average.

Figure 4: Water Quality Index, Underwood Creek, Sites 1 – 7, 2003 – 2005,

A graphical representation of the annual average (2003 – 2005) WQI values for all sites on Underwood Creek can be found in Figure 4.

Again, on average, the best year across all sites was 2004, followed by 2003. Generally, the year 2005 experienced degradation in the WQI at all sites when compared to the previous 2 years except UC-04. This site remained very consistent, exhibiting a slight improvement in the WQI in 2005. Based on the annual averages, water quality improves in the upper reaches of Underwood Creek as it heads downstream; water guality becomes worse when moving downstream in the south branch of Underwood Creek; and with the exception of the year 2005, improves slightly in the lower reaches (mainstem) when moving downstream. Figure 5 illustrates the predominant individual subindex variables contributing to lower WQI values. For all sites, generally, total phosphorus (TP), soluble phosphorus (SP), fecal coliform bacteria (fecal), chloride (CL), and to a lesser extent total organic carbon (TOC) drag the final WQI value downward toward poorer water quality. Conversely, the subindices for ammonia (NH3), unionized ammonia (UNH3), suspended solids (SS), copper (CU) and zinc (ZN) were consistently ranked as "good" with copper and zinc dropping to "fair" on a few occasions. Dissolved oxygen (DO) generally displayed subindex values in the "good" and "fair" ranges and on the two occasions that it did receive a "bad" ranking, it almost certainly had a negative effect on the final WQI value. Total organic carbon (TOC) ranged from "good" to "bad" water quality with one "very bad" subindex value. On a site to site basis, ammonia, un-ionized ammonia, suspended solids, copper, and zinc remained generally steady. Dissolved oxygen, total phosphorus, soluble phosphorus, fecal coliforms, and total organic carbon displayed more variability in the subindex values. On a site by site basis, all subindices remained fairly consistent, never fluctuating out of its yearly ranking more than once.

Underwood Creek sites were also compared statistically using the software package - *Statistica®*. WQI data were utilized for this comparison.

Final index values for all years (2003 – 2005) were compared using an independent T-test on a site-by-site basis (i.e. UC-01 was compared to UC-02, UC-03, UC-04, UC-05, UC-06, and UC-07 etc.). The specific results of this analysis can be found in Appendix F. Statistically, water quality at UC-05 was significantly different from all other Underwood Creek sites, verifying the WQI's analysis and finding of the worst water quality of all sites examined. Water quality at UC-03 (best site by WQI analysis) was found to be significantly different from UC-01 and UC-02 but not significantly different from water quality at UC-06, and UC-07. This is not surprising given the WQI results at these locations; UC-03, UC-04, UC-06, and UC-07 were the only sites ranking as "fair" water quality while the other Underwood Creek sites (UC-01, UC-02, and UC-05) were ranked as "bad" water quality.

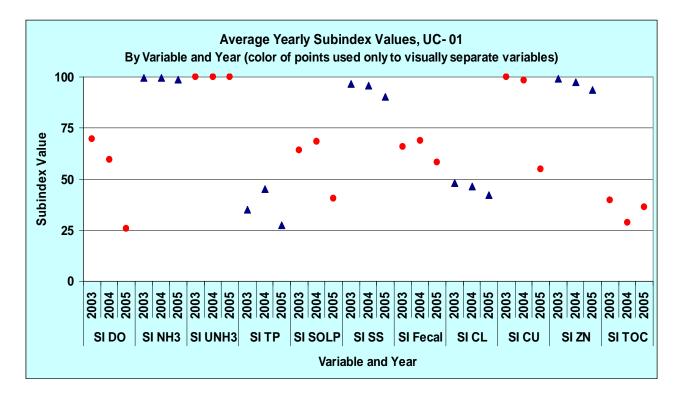
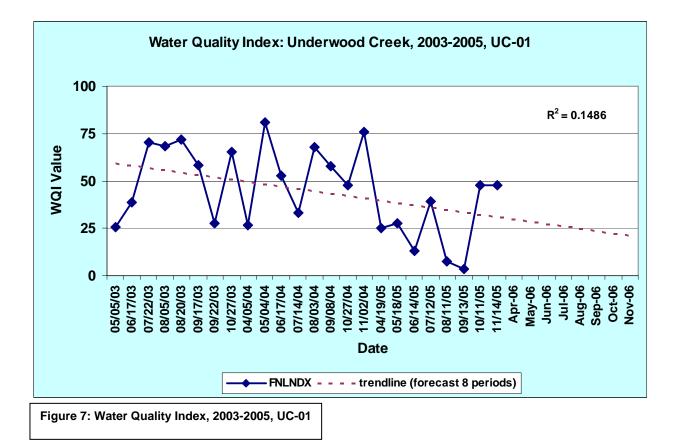
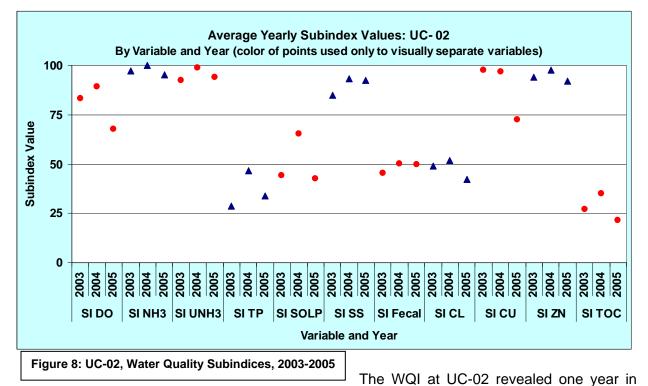




Figure 6: UC-01, Water Quality Subindices, 2003-2005

UC-01 displayed 2 years in the lower range of "fair" water quality and one year in the very low range of "bad" water quality (Figure 4, Table 3). The highest annual WQI average occurred in 2004 when the index reached 55.3. The lowest annual WQI average occurred in 2005 when the index reached 26.4. The 3 year annual average was 45.02. Total phosphorus, soluble phosphorus, and fecal coliform bacteria achieved their highest index values in 2004 (Figure 6) contributing to the highest annual WQI attained in 2004. Dissolved oxygen, total phosphorus, soluble phosphorus, fecal coliform bacteria, suspended solids, chlorides, copper, and zinc all received their lowest subindex values in 2005 causing the lowest WQI rating of the years examined. Dissolved oxygen, soluble phosphorus and copper exhibited the most influence on the bad water quality observed in 2005. Note that dissolved oxygen dropped from a "fair" subindex ranking to a very low (almost "very bad") "bad" subindex value. Soluble phosphorus dropped from "fair" to "bad" water quality and copper dropped from "excellent" and "good" to "fair" water quality.

This site displayed a general declining trend in the WQI for the 3 year sampling period and its 1year future forecast (a predicted value calculated by using known values; these known values are obtained from existing x-values and y-values, and the new value is predicted by using linear regression) (Figure 7). This trend was not of strong significance with an R² value of 0.1486. The declining trend and predication are most likely due to the significant degradation of water quality seen in 2005.

the mid range of "fair" water quality and two years of "bad" water quality (Figure 4, Table 3).

The highest annual WQI average occurred in 2004 when the index reached 63.15. The lowest annual WQI average occurred in 2005 when the index reached 39.2. The 3 year annual average was 49.14. Dissolved oxygen, ammonia, un-ionized ammonia, total phosphorus, soluble phosphorus, suspended solids, fecal coliform bacteria, chlorides, zinc, and total organic carbon achieved their highest index values in 2004 (Figure 8) contributing to the highest annual WQI attained in 2004. Dissolved oxygen, ammonia, soluble phosphorus, chlorides, copper, zinc, and total organic carbon all received their lowest subindex values in 2005 causing the lowest WQI rating of the years examined. Dissolved oxygen, chlorides, copper, and total organic carbon exhibited the most influence on the bad water quality observed in 2005. Note that dissolved oxygen dropped from a "good" subindex ranking to a "fair" subindex value. Copper dropped from a "good" subindex value to a "fair" ranking, and total organic carbon fell from "bad" to "very bad".

This site exhibited a very slight improving trend in the WQI for the three year sampling period and its one-year future forecast (Figure 9). This trend was not significant with an R^2 value of 0.0012.

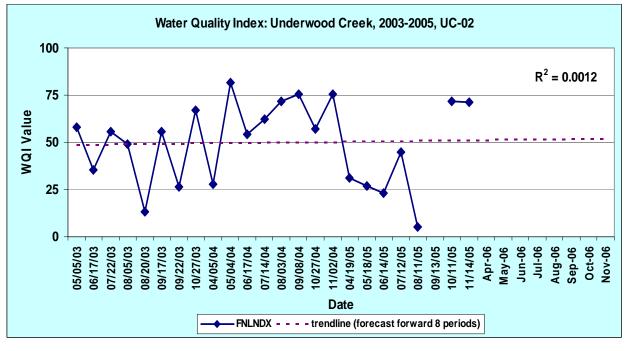


Figure 9: Water Quality Index, 2003-2005, UC-02

UC-03 was very consistently ranked in the mid to upper range of "fair" water quality (Figure 4, Table 3). The highest annual WQI average occurred in 2003 when the index reached 70.23. The lowest annual WQI average occurred in 2004 when the index reached 62.96. The 3 year annual average was 65.9. This site demonstrated the best water quality of all the Underwood Creek locations. The subindices were also very consistent (Figure 10). The only subindex variables that changed rankings were soluble phosphorus and total organic carbon. Both of these variables dropped down to the next category. Soluble phosphorus dropped from "good" to "fair" and total organic carbon dropped from "fair" to "bad" water quality. Copper and total organic carbon achieved their highest index values in 2003 contributing to the highest annual WQI reached in 2003. The dissolved oxygen subindex was always ranked at "excellent". Ammonia, un-ionized ammonia, total phosphorus, suspended solids, fecal coliform bacteria and

total organic carbon all received their lowest subindex values in 2004 causing the lowest WQI rating of the years examined. The subindex variables exerting the most influence in maintaining "fair" water quality were dissolved oxygen, ammonia, un-ionized ammonia, copper, zinc, and (to a lesser extent) suspended solids as these were always ranked as "good". The subindices

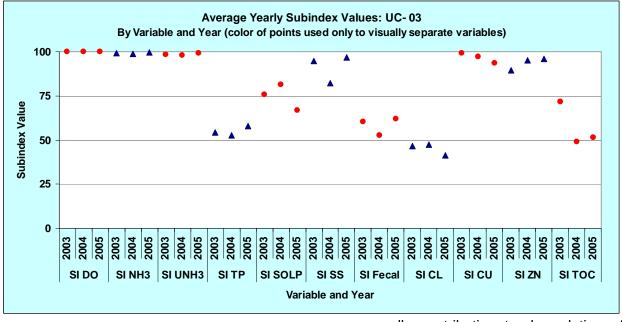


Figure 10: UC-03, Water Quality Subindices, 2003-2005

generally contributing to degradation of water quality were total phosphorus, fecal coliform bacteria, chlorides and total organic carbon.

This site displayed a very weak improving trend in the WQI for the 3 year sampling period and its 1-year future forecast (Figure 11). This trend was not of any significance with an R^2 value of 0.0001.

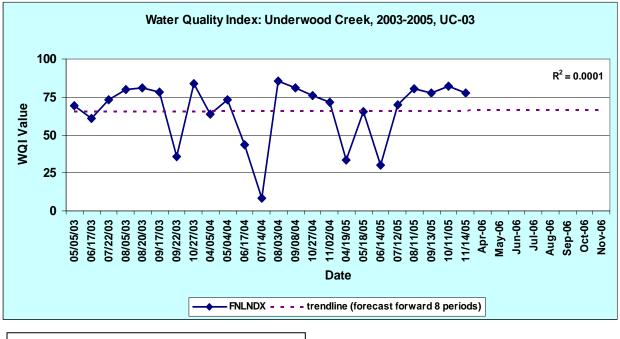


Figure 11: Water Quality Index, 2003-2005, UC-03

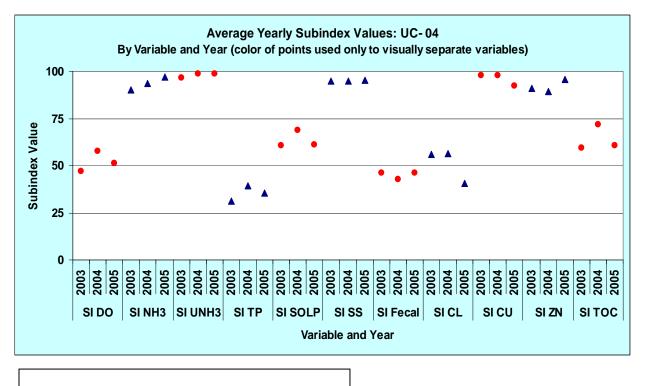
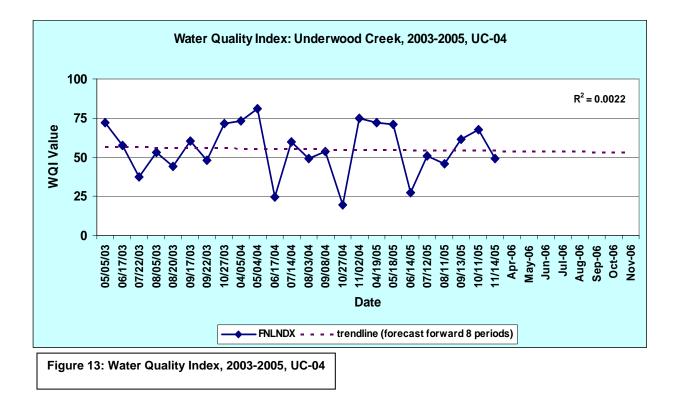
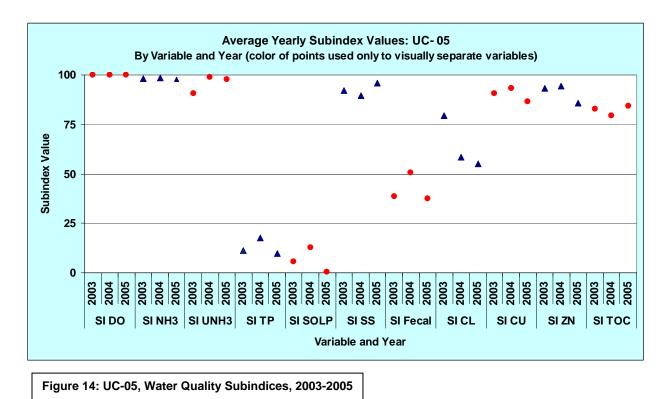
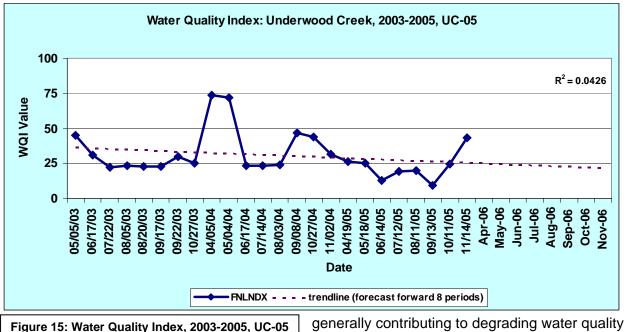




Figure 12: UC-04, Water Quality Subindices, 2003-2005

UC-04 was very consistently ranked in the low range of "fair" water quality and in fact exhibited the most stable water quality of all Underwood Creek locations (Figure 4, Table 3). The highest annual WQI average occurred in 2005 when the index reached 55.70; however, 2003 was very close to this value with a WQI average of 55.46. The lowest annual WQI average occurred in 2004 when the index reached 54.41. The 3 year annual average was 55.19. The WQI subindices were also very consistent (Figure 12). The only subindex variables that changed rankings were dissolved oxygen and chlorides. Dissolved oxygen was ranked as "bad" in 2003 and "fair" for the other years. Chlorides dropped from "fair" to "bad" in 2005. Ammonia, suspended solids, and zinc achieved their highest index values in 2005 contributing to the highest annual WQI reached in 2005. Suspended solids, fecal coliform bacteria, and zinc all received their lowest subindex values in 2004 contributing to the lowest WQI rating of the years examined. The subindex variables exerting the most influence in maintaining "fair" water quality were ammonia, un-ionized ammonia, suspended solids, copper, and zinc as these were always ranked as "good". The subindices generally contributing to degrading water guality were total phosphorus and fecal coliform bacteria. These variables were always ranked as "bad" water quality. Chlorides also played a role in the low subindex value of 2005 when it was ranked as "bad". The soluble phosphorus and total organic carbon subindices were always rated as "fair".


This site displayed a very weak declining trend in the WQI for the 3 year sampling period and its 1-year future forecast (Figure 13). This trend was not of any significance with an R^2 value of 0.0022.

The WQI at UC-05 revealed a site that was always rated as "bad" or "very bad" water quality. This location by WQI standards displayed the worst water quality of all Underwood Creek sites

(Figure 4, Table 3). The 3 year annual average was 30.96, signifying "bad" water guality. The highest annual WQI average occurred in 2004 when the index reached 42.42; representing "bad" water quality. The lowest annual WQI average occurred in 2005 when the index reached 22.60, indicating "very bad" water quality. The WQI subindices were fairly consistent (Figure 14). The subindex variables that changed rankings were soluble phosphorus, fecal coliform bacteria, and chlorides. Soluble phosphorus was rated as "very bad" water quality in 2003 and 2004 and dropped to "worst" in 2005. Fecal coliforms went from "bad" water quality in 2003 to "fair" in 2004; dropping back to "bad" in 2005. Chlorides dropped from "good" in 2003 to "fair" in 2004 and 2005. Ammonia, un-ionized ammonia, total phosphorus, soluble phosphorus, fecal coliform bacteria, copper, and zinc achieved their highest index values in 2004 contributing to the highest annual WQI achieved in 2005. Of these variables, fecal coliform bacteria, total phosphorus, and soluble phosphorus likely exerted the most influence on the WQI in 2004. Ammonia, total phosphorus, soluble phosphorus, fecal coliform bacteria, chlorides, copper, and zinc all received their lowest subindex values in 2005 contributing to the lowest WQI rating of the years examined. Of these variables, soluble phosphorus potentially contributed the most influence to the "very bad" water quality value when it degraded from "very bad" to "worst" with a subindex value of 0.32 (Table 4). The subindex variables exerting the most weight in maintaining "bad" water quality were dissolved oxygen, ammonia, un-ionized ammonia, suspended solids, copper, zinc, and total organic carbon as these were always ranked as "good" and probably prevented the WQI from dropping to a "very bad" ranking. The subindices

generally contributing to degrading water quality were total phosphorus and soluble phosphorus as they were always rated in the "very bad"

water quality category (except as noted above, i.e. 2005 soluble phosphorus). Fecal coliform bacteria also played a role in the low WQI values as it generally was ranked in the "bad" category. It should be noted that dissolved oxygen values could be influenced by the Zoo/Lake Evinrude outfall located immediately upstream of the sampling location. The water entering Underwood Creek from this outfall may serve as a source of aeration therefore, dissolved oxygen could be affected through the physical nature of this aeration. This outfall most likely is exerting a strong influence on the other water quality parameters as well. The water quality status (as determined by trophic state) in Lake Evinrude is considered to be Eutrophic (Sabre

2006). This status is indicative of nutrient rich conditions (high phosphorus) which can lead to blooms of algae and other nuisance aquatic plants.

This site displayed a very weak declining trend in the WQI for the 3 year sampling period and its 1-year future forecast (Figure 15). This trend was not of any significance with an R^2 value of 0.0426.

The WQI at UC-06 revealed a site that was always rated as "fair" or "bad" water quality (Figure 4, Table 3). The 3 year annual average was 55.42, indicating "fair" water quality. The highest annual WQI average occurred in 2004 when the index reached 60.10; representing "fair" water quality. The lowest annual WQI average occurred in 2005 when the index reached 49.12; indicating "bad" water quality (note this value resides at the top of the range, close to "fair"). The WQI subindices were generally stable (Figure 16). The subindex variables that changed

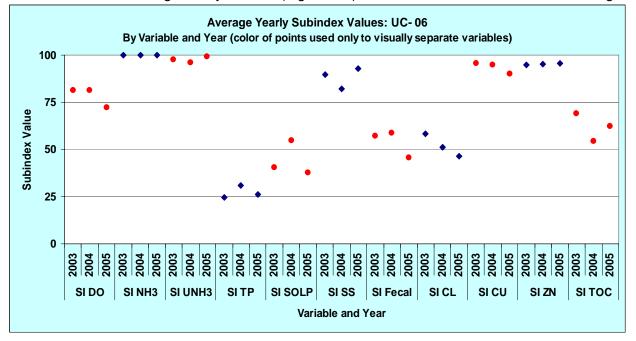


Figure 16: UC-06, Water Quality Subindices, 2003-2005

rankings were total phosphorus, soluble phosphorus, fecal coliform bacteria, and chlorides. Total phosphorus improved from "very bad" water quality in 2003 to "bad" in 2004 and 2005. Soluble phosphorus was rated as "bad" water quality in 2003 and 2005 and ranked as "fair" in 2004. Fecal coliforms were ranked as "fair" in 2003 and 2004 and dropped to "bad" in 2005. Chlorides dropped from "fair" in 2003 and 2004 to "bad" 2005. Total phosphorus, soluble phosphorus, and fecal coliform bacteria achieved their highest index values in 2004 contributing to the highest annual WQI achieved in 2004. Dissolved oxygen, soluble phosphorus, fecal coliforms, chlorides, and copper all received their lowest subindex values in 2005 contributing to the lowest WQI rating of the years examined. Of these variables, dissolved oxygen, soluble phosphorus, fecal coliforms, and chlorides potentially contributed the most influence to the "bad" water quality value when they degraded from a higher ranking. The subindex variables exerting the most weight in maintaining generally "fair" water quality were dissolved oxygen, ammonia, un-ionized ammonia, suspended solids, copper, and zinc, as these were always ranked as "good", except dissolved oxygen in 2005. The subindices generally contributing to degrading water quality were total phosphorus and soluble phosphorus as they were generally rated in the

"bad" water quality category. Fecal coliform bacteria and chlorides also played a role in lower WQI values, especially when they fell into a more degraded water quality category.

UC-06 displayed a weak declining trend in the WQI for the 3 year sampling period and its 1-year future forecast (Figure 17). This trend was not of any significance with an R² value of 0.0535.

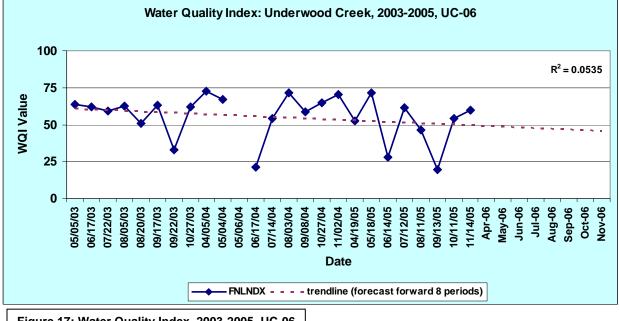


Figure 17: Water Quality Index, 2003-2005, UC-06

The WQI at UC-07 was generally rated as when the index value dropped into the "bad"

"fair" water quality, with the exception of 2005 when the index value dropped into the "bad" category. The 3 year annual average was 53.98 or "fair" water quality. The highest annual WQI

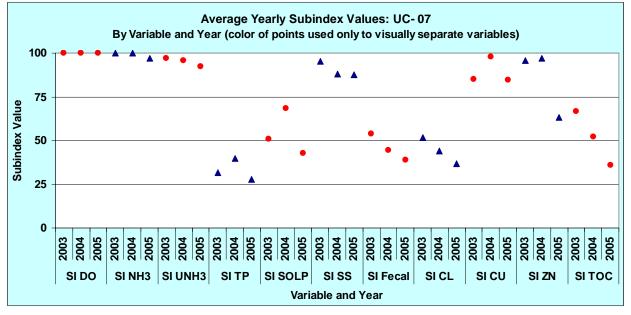


Figure 18: UC-07, Water Quality Subindices, 2003-2005

average occurred in 2003 when the index reached 62.57, representing "fair" water quality. The lowest annual WQI average

occurred in 2005 when the index reached 38.75; indicating "bad" water quality. Most of the WQI

subindices were generally consistent (Figure 18). The subindex variables that changed rankings were soluble phosphorus, fecal coliform bacteria, chlorides, zinc, and total organic carbon. Soluble phosphorus was rated as "fair" water quality in 2003 and 2004 and dropped to "bad" in 2005. Fecal coliforms went from "fair" water quality in 2003 to "bad" in 2004 and 2005. Chlorides dropped from "fair" in 2003 to "bad" in 2004 and 2005. Zinc dropped from "good" in 2003 and 2004 to "fair" in 2005 and total organic carbon dropped from "fair" in 2003 and 2004 to "bad" in 2005. Ammonia, un-ionized ammonia, suspended solids, fecal coliforms, chlorides, and total organic carbon achieved their highest index values in 2003 contributing to the highest annual WQI achieved in 2003. Of these variables, fecal coliform bacteria, and chlorides likely exerted the most influence on the WQI in 2003 as their index values were ranked in the "fair" category. These variables for the other years examined always fell into "bad" water quality. Total organic carbon and suspended solids also influenced the WQI in 2003. Ammonia, un-ionized ammonia, total phosphorus, soluble phosphorus, suspended solids, fecal coliform bacteria, chlorides, copper, zinc, and total organic carbon all received their lowest subindex values in 2005 contributing to the lowest WQI rating of the years examined. Of these variables, soluble phosphorus, zinc, and total organic carbon potentially contributed the most influence to the "bad" water quality value in 2005. The WQI value for these constituents all dropped into a lower water quality category, with zinc moving from "good" to "bad". The subindex variables exerting the most weight in maintaining the WQI were dissolved oxygen, ammonia, un-ionized ammonia, suspended solids, copper, and zinc. These constituents were always ranked as "good" (except zinc in 2005) and probably prevented the WQI from degrading. The subindices generally contributing to degrading water quality were total phosphorus, fecal coliforms, and chlorides as they were usually ranked in the "bad" water quality. Soluble phosphorus and total organic carbon also contributed to the overall "fair" water quality of the site since they usually exhibited "fair" subindex ranking (except in 2005). It should be noted that dissolved oxygen is definitely influenced by sampling location. Water quality samples are collected immediately downstream of a weir structure which provides enough agitation to keep D.O. levels high.

UC-07 displayed a declining trend in the WQI for the 3 year sampling period and its 1-year future forecast (Figure 19). This trend was not of any significance with an R² value of 0.1561. Even though the trendline was not significant at UC-07, it was the strongest of all the Underwood Creek locations.

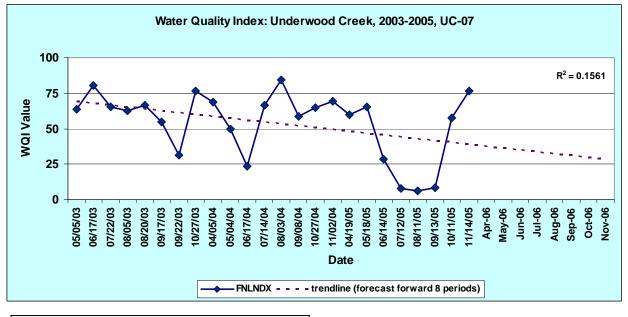


Figure 19: Water Quality Index, 2003-2005, UC-07

In general, an examination of the individual subindex numbers for the entire 2003-2005 WQI database reveals the parameters influencing the WQI on Underwood Creek. In general, higher subindex values ("fair" and "good" water quality) for dissolved oxygen, ammonia, un-ionized ammonia, the metals copper and zinc, and suspended solids existed most of the time and contributed by and large to "fair" water quality. Whenever a final WQI value trended lower ("bad" and "very bad" water quality) however, the primary components accounting for these reduced numbers generally included higher concentrations of total phosphorus, soluble phosphorus, fecal coliform bacteria, chlorides, and total organic carbon. Dissolved oxygen, copper, zinc, and total organic carbon values also played a role in lowering a few WQI readings. Table 4 contains Water Quality Index – average yearly subindex (SI) and annual values.

Variable		UC-01	UC-02	UC-03	UC-04	UC-05	UC-06	UC-07	
SI DO	2003	69.63	83.47	100.00	46.94	100.00	81.23	100.00	
	2004	59.61	89.10	100.00	57.52	100.00	81.16	100.00	
	2005	25.74	67.80	100.00	51.10	100.00	72.04	100.00	
SI NH3	2003	99.69	97.27	99.06	90.08	98.13	100.00	99.92	-
	2004	99.38	99.92	98.91	93.67	98.67	99.92	99.92	
	2005	98.67	95.09	99.69	97.19	97.89	100.00	97.11	
SIUNH3	2003	100.00	92.45	98.35	96.64	90.60	97.55	96.93	•
	2004	100.00	98.71	97.84	98.79	98.73	95.89	95.73	
	2005	99.81	93.83	99.29	98.61	97.84	99.34	92.30	
SI TP	2003	35.00	28.56	54.16	31.03	11.41	24.63	31.81	
	2004	45.08	46.52	52.50	39.43	17.54	30.77	39.88	
	2005	27.47	33.88	57.86	35.31	9.85	26.28	27.86	_
SI SOLP	2003	64.11	44.38	75.89	60.66	5.63	40.49	50.74	-
	2004	68.42	65.21	81.57	68.63	12.60	54.58	68.46	
	2005	40.58	42.66	66.81	61.19	.32	37.63	42.94	_
SI SS	2003	96.45	84.86	94.92	95.00	92.02	89.50	95.31	-
	2004	95.58	93.42	82.16	94.83	89.33	82.31	88.23	
	2005	90.35	92.40	96.88	95.46	95.82	92.95	87.82	_
SI Fecal	2003	65.96	45.54	60.30	46.21	38.76	57.28	53.64	-
	2004	68.78	50.05	52.72	42.65	50.54	58.79	44.24	
	2005	58.09	49.95	62.11	46.00	37.49	45.68	39.10	-
SI CL	2003	48.01	49.09	46.38	55.85	79.26	58.39	51.67	
	2004	46.45	51.96	47.27	56.38	58.35	51.30	43.99	
	2005	42.41	42.41	41.39	40.62	55.06	46.25	36.81	_
SI CU		100.00	97.50	99.11	97.68	90.72	95.72	85.00	-
	2004	98.39	96.97	97.14	98.04	93.22	95.00	98.04	
	2005	55.00	72.50	93.57	92.50	86.43	90.00	84.65	
SI ZN	2003	99.22	93.84	89.64	91.24	93.39	94.96	95.52	
	2004	97.48	97.76	95.10	89.14	94.32	95.38	96.92	
	2005	93.84	92.10	96.08	95.52	85.72	95.80	63.30	
SI TOC	2003	39.61	26.91	71.79	59.19	82.82	68.98	66.79	
	2004	28.78	35.24	48.88	71.97	79.42	54.20	52.22	
	2005	36.21	21.56	51.46	60.86	84.30	62.25	35.86	r
Excellent	100	Year	UC-01	UC-02	UC-03	UC-04	UC-05	UC-06	UC-07
Good	75-99	2003	53.3	45.1	70.2	55.5	27.9	57.0	62.0
Fair	50-74	2004	55.3	63.2	63.0	54.4	42.4	60.1	60.0
Bad	25-49	2005	26.4	39.2	64.6	55.7	22.6	49.1	38.
Very Bad	1-24			14	VQI = Good			-	
Worst	<1		KEY:		VQI = Bad		Very Bad		
WUISL	51	-					-		

NOTE: When the SI value = 100, the WQI rank is equal to excellent water quality. When the SI value is less than 1, the WQI rank is equal to worst water quality.

Precipitation

Water quality is affected by many factors, including precipitation. On an average annual basis, Milwaukee officially receives 31.5 inches of precipitation at Mitchell Field (period of record - 59 years). In very general terms, two of the years, 2003 and 2005 in the Underwood Creek sampling period of 2003, 2004 and 2005 registered lower than normal annual precipitation at Mitchell Field (Table 5). The sampling year 2004 was slightly wetter than average. Specific annual precipitation percent decreases/increases compared to the 59-year precipitation annual average are as follows: 2003 (-29%), 2004 (+4.5%), and 2005 (-18%). A few individual monthly precipitation averages were higher than historical monthly averages, as measured at Mitchell Field. These months included: November 2003; May, June and August 2004; and September and November 2005. On the other hand, there were many more months with lower than average precipitation. For example, June, August, September, and October 2003; April, September, and October 2004; as well as April, May, June, July, August, and October 2005 registered monthly precipitation noticeably below the Mitchell Field historical average (Table 5).

Year	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Annual
2003	2.61	3.65	1.49	2.43	0.57	1.65	1.51	3.94	22.30
2004	1.87	8.18	4.07	3.25	3.43	0.24	1.47	2.38	32.94
2005	1.41	2.62	2.23	2.60	1.29	4.17	0.95	3.65	25.92
59 Year	3.00	3.34	3.60	3.11	3.13	3.19	2.29	2.18	31.52
Average									

More localized precipitation data are also measured at various MMSD weather stations (WS). One District station, WS1219, resides in the Underwood Creek watershed at 13600 W. Juneau Boulevard (Legion Drive) at the Elm Grove Village Hall. A summary of Underwood Creek WS1219 data can be found in Table 6 below and the raw data are located in Appendix C. Annual precipitation totals for 2003, 2004 and 2005 at WS 1219 mirrored data at Mitchell Field with 2003 and 2005 being drier than average and 2004 registering wetter than average (Table 6). As you would expect, most of the highest precipitation months measured at Mitchell Field also exhibited the highest precipitation at the Underwood Creek weather station including: November 2003; May, and June 2004; and September and November 2005. Similarly, many of the driest months determined officially at Mitchell Field additionally registered below normal precipitation at the Underwood Creek weather station including June, July, August, September, and October 2003; April, September, and October 2004; in addition to April, May, June, July, August, and October 2005 (Table 6).

Table 6: Underwood Creek	Total Monthly, Average,	and Total Precipitation (Inches) –
Weather Station (WS) 1219		

Year	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Annual
2003	2.94	4.39	1.85	1.59	0.56	1.82	1.66	4.38	19.19
2004	2.40	8.84	4.13	3.14	3.10	0.26	1.76	2.41	26.04
2005	1.08	2.77	1.89	2.15	1.53	4.36	0.51	4.27	18.56
59 Year	3.00	3.34	3.60	3.11	3.13	3.19	2.29	2.18	31.52
Mitchell									
Average									
WS 1219	2.14	5.33	2.62	2.29	1.73	2.15	1.31	3.69	21.26
3 Yr. Avg.									

The adverse effects of wet weather on water quality in an urban environment are well documented. Masterson and Bannerman (1994) found that stormwater discharges affected the following: exceedance of water quality criteria, contaminated sediment, excessive high and low flows, sedimentation, bioaccumulation and toxicity, and poor habitat. All of these factors affect the biological integrity of urban streams.

The impact of rainfall was analyzed for the three year sampling period utilizing a linear correlation yielding the following results (Table 7, Figure 20):

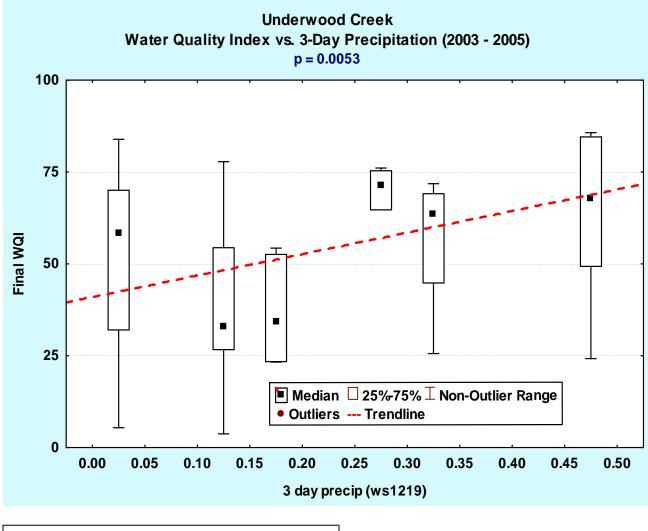

Pair of VariablesImage: Since	Valid N	Spearman	+(NL O)				
SITNH3 & 3 day precip (ws1219) SIUNNH3 & 3 day precip (ws1219)		R					
SIUNNH3 & 3 day precip (ws1219)	168	-0.026203	-0.33772	0.736002			
	168	-0.027904	-0.35965	0.719564			
	168	0.005095	0.06565	0.947736			
SITP & 3 day precip (ws1219)	168	-0.110387	-1.43098	0.154317			
SISOLP & 3 day precip (ws1219)	168	-0.075164	-0.97117	0.332876			
SISS & 3 day precip (ws1219)	168	-0.156139	-2.03669	0.043270			
SILGFEC & 3 day precip (ws1219)	168	-0.481508	-7.07840	0.000000			
SICHLOR & 3 day precip (ws1219)	168	0.305971	4.14075	0.000055			
SICU & 3 day precip (ws1219)	168	-0.331177	-4.52210	0.000012			
SIZN & 3 day precip (ws1219)	168	-0.344994	-4.73568	0.000005			
SITOC & 3 day precip (ws1219)	168	0.044917	0.57930	0.563174			
FNLNDX & 3 day precip (ws1219)	166	-0.081049	-1.04136	0.299239			


Table 7: 2003-2005 Underwood Creek Water Quality Index vs. 3-Day Precipitation.

SI = SubIndex Appendix D contains a variable abbreviations table.

Suspended solids, log fecal coliform, copper, and zinc were all negatively impacted by rainfall (as rainfall increases, the WQI value for these variables deteriorates) and most likely the subsequent associated stormwater runoff. The concentrations of these variables in Underwood Creek increased with rainfall; this was a statistically valid correlation. The Wisconsin Department of Natural Resources estimates that within the State, approximately 40% of our streams and 90% of our inland lakes are degraded or threatened due to nonpoint source pollution or polluted stormwater runoff (WDNR 2001). Chlorides exhibited a positive correlation (as rainfall increases, the WQI value for this variable improves). It is possible that precipitation is exhibiting a dilutional effect on chloride concentrations. Note that a statistically significant correlation was not found between the final WQI and 3-day precipitation and this is illustrated in Figure 20.

Again, the trendline illustrated in Figure 20 was not significant and is the exact opposite of what one would expect to see with increasing rainfall amounts. This is most likely due to the limited amount of precipitation greater than 0.25 inches received during the study period (on or preceding sampling dates). These were marginal events, not typical of a more significant rainfall that would generate a greater load of stormwater to the creek. Of the 24 sampling dates, only 3 had a 3-day average precipitation of 0.25 or greater. Precipitation and discharge data with associated sample dates can be found in Appendix C.

Water Quality Trends – Dissolved Oxygen

Water Quality Standards and Criteria for Toxic Substances for Wisconsin surface waters (WDNR 1998) were established to preserve and/or enhance the quality of the state's waters. They protect the health of the public, fish, and the aquatic community as well as the waterway as a whole. Standards and Criteria also serve as measuring tools when water resource management decisions are made and are utilized in this evaluation. Variance categories have been developed for specific waters that could not meet the statutory objectives of the water quality standards. Portions of Underwood Creek (all of Underwood Creek below Juneau Boulevard: WDNR - NR 104) are classified as a special variance category watercourse. For the purposes of this report, the Full Fish and Aquatic Life Water Quality Standard was utilized to evaluate the potential effect of MMSD watercourse improvements.

The dissolved oxygen (DO) concentration in a waterbody is one of the key indicators of its overall health. The Wisconsin State Surface Water Warm Water Quality Standard is a minimum of 5.0 mg/L DO to support full fish and aquatic life. The State variance classification is not less than 2 mg/L at any time for parts of Underwood Creek.

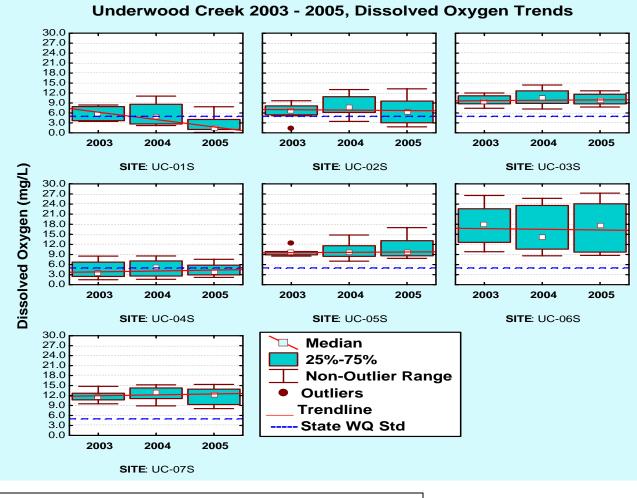
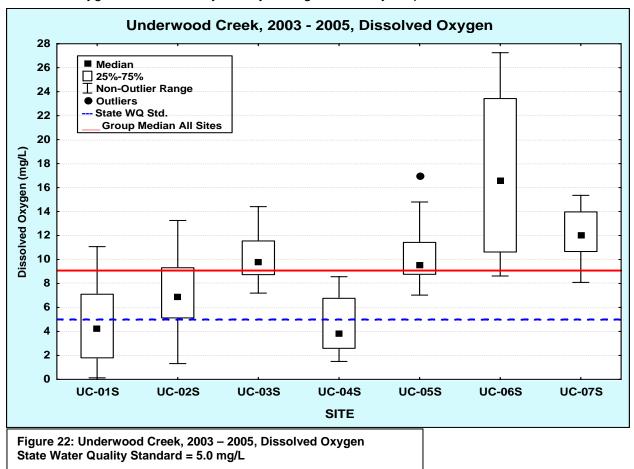
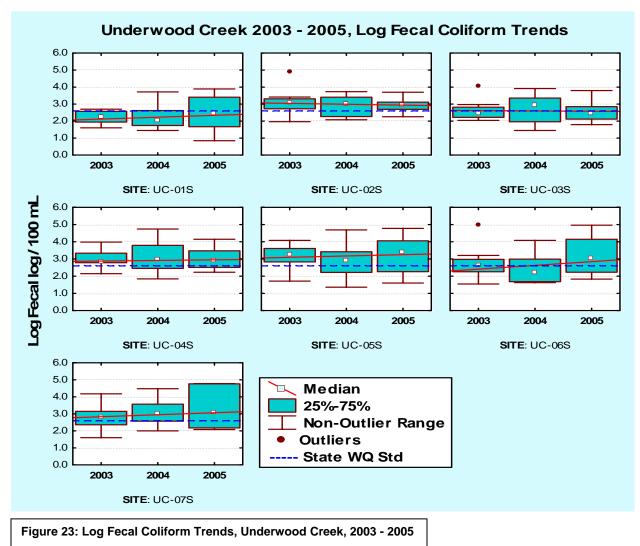



Figure 21: Dissolved Oxygen Trends, Underwood Creek, 2003 - 2005

Generally speaking, the majority of sites had 50% or more of the values above the State Warm Water Standard (Figures 21 and 22). No appreciable trend was noted at any Underwood Creek site except for UC-01 which displayed a declining trend (Figure 21). This trend was most likely due to the low D.O. values observed in 2005. Note that the WQI rating for this variable was "bad" in 2005 with a value of 25.7; while the previous two years were rated as "fair". Otherwise dissolved oxygen remained fairly steady throughout the 3 year period. Sites UC-3, UC-5, UC-6,


and UC-7 had 100% of the values above the standard (Figures 21, 22). For the three year period examined, UC-6 had the highest median value followed by UC-7, UC-3, and UC-5 respectively. UC-06 is a shallow, channelized site with an open canopy and is subject to super saturation of dissolved oxygen caused by attached algae; this most likely was a significant source of dissolved oxygen, contributing to the highest median value. UC-4 displayed the lowest median value of the 7 sites and all of its' dissolved oxygen values were below the group median for all sites and the median fell below the State Warm Water Standard. UC-1 had the 2nd lowest median value of all the sites with the site median and most dissolved oxygen values falling below the group median. The median value at UC-01 was also below the State Warm Water Standard.

Water Quality Trends – Fecal Coliform Bacteria

Fecal coliform bacteria are used as microbiological indicators of the safety of surface water for swimming or other body contact. The presence of fecal coliforms indicates contamination from

the intestinal tracts of warm-blooded animals. The State of Wisconsin Surface Water Warm Water Quality Standard for fecal coliform bacteria (Membrane Filter (MF) method) may not exceed 200 per 100 mL as a geometric mean based on not less than 5 samples per month, nor exceed 400 per 100 mL in more than 10% of all samples during any month in recreational waters. Portions of Underwood Creek are considered a special variance water and therefore the standard is a maximum of 1000 colony forming units (CFU) per 100 mL, also based on five samples per month. The recreational waters standard of 400 per 100 mL was utilized for this analysis (2.6 log fecal coliform bacteria per 100 mL).

Most of the fecal coliform values, at all sites and in each year examined, exceeded the Wisconsin State Warm Water Standard during the 3 year sampling period (Figures 23, 24). In fact, with the exception of UC-01, UC-03 (2003, 2004) and UC-06 (2004), nearly 100% of the median fecal coliform values were all above the standard. Slight upward trends were exhibited at UC-06 and UC-07; other Underwood Creek site fecal values remained generally steady. UC-01 and UC-03 appear to be the best sites in relation to other Underwood Creek sites. Notably, these two sites were the only locations where the fecal coliform subindex values were always rated as "fair" by the WQI. UC-05 appears to be the worst site with the highest median values exhibited in the years 2003 and 2005. This agrees with the WQI's finding of UC-05 being the worst site from a water quality perspective; fecal coliform bacteria values were a prominent contributor to the low index rating.

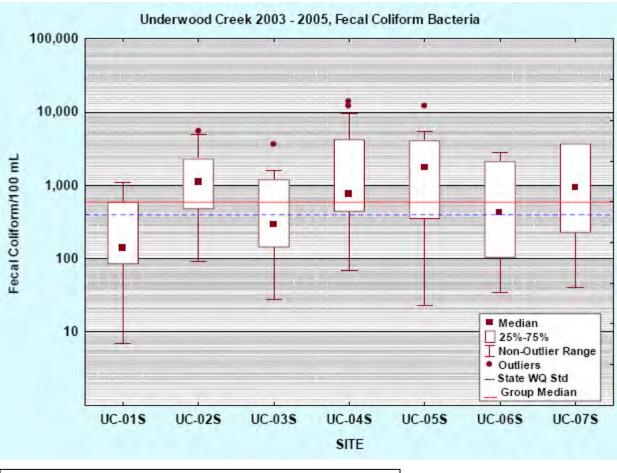
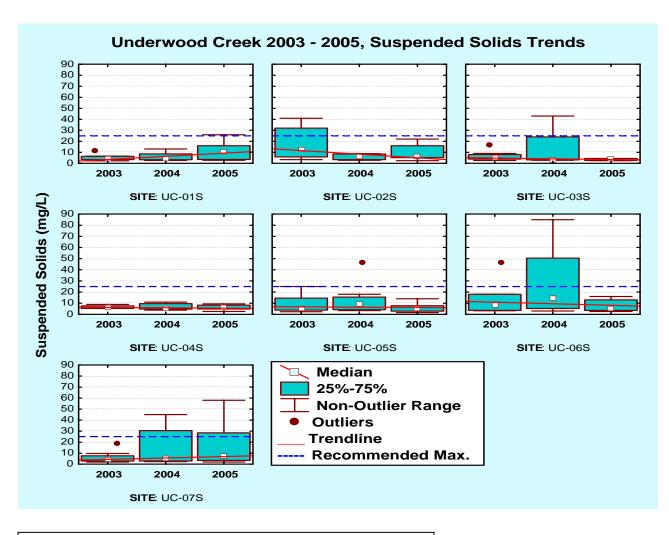
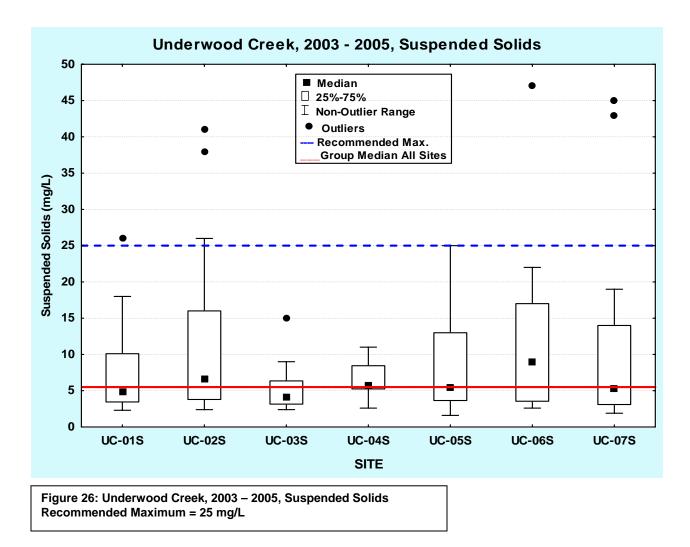



Figure 24: Underwood Creek, 2003-2005, Fecal Coliform Bacteria State Water Quality Standard = 400/100 mL

UC-5 had the highest median values of all the sites, followed by UC-2, UC-7, and UC-4 respectively, all of which displayed median values above the State Standard and above the overall group median (all sites, all years). The high fecal values at UC-5 most likely contributed to this site receiving the lowest WQI ranking of all Underwood Creek sites. The median values at UC-1 and UC-3 were the only ones that fell below the State Standard. Additionally, the overall group median (all sites, all years, Figure 24) was above the State Water Quality Standard.

Water Quality Trends – Suspended Solids

Solids are another important water quality variable to monitor. Streets and lawns greatly contribute to suspended solids loads in residential urban settings (USGS 1999). High concentrations of solids can have serious negative water quality impacts. Elevated solids levels can adversely affect drinking water, aquatic organisms, and light penetration. Suspended solids (SS) consist of inorganic (non-living, for example – clay, silt, etc.) and organic particles (algae, bacteria, detritus, etc.) and generally are those materials that give water its turbidity or cloudiness. Suspended solids include all solids that are suspended in the water and will not pass through a filter. While a Wisconsin State Water Quality Standard for suspended solids does not exist, the American Fisheries Society (1979) recommends the maximum concentration of suspended solids "not to exceed 25 mg/L" for a high level of protection.



Most suspended solid values were below the recommended maximum concentration and all of the median values were below the recommended maximum (Figures 25, 26).

An appreciable trend at any one site did not exist, however, UC-02 and to a lesser extent, UC-06 did reveal a slight downward trend; UC-01 and UC-07 did exhibit slight upward trends. While UC-04 exhibited the most consistent values and medians over the three year period; UC-03 had the lowest and generally consistent medians and this contributed to the site receiving the highest WQI ranking of all Underwood Creek locations.

UC-06 had the highest overall median value of all sites while UC-03 had the lowest median. The group median (all sites, all years) was well below the recommended maximum value (Figure 26). The individual site medians and almost all values, with the exception of outliers, were also below the recommended maximum. This verifies the WQI rating of "good" for suspended solids in Underwood Creek.

Water Quality Trends – Phosphorus

Phosphorus in the form of phosphate is a major nutrient required for plant nutrition and is essential for life. Streets and lawns are the largest contributors of total and dissolved phosphorus loads in a residential urban basin (USGS 1999). In fact, USGS found that commercial fertilizers comprised 54% of the total phosphorus input in this area (USGS 1998a). High phosphate concentrations can overstimulate excess plant growth, which can lead to accelerated aging of a waterway. Soluble phosphorus is the form most readily available to aquatic plant communities. There are no Wisconsin State Surface Water Quality Standards for phosphorus; the recommended maximum concentrations for total phosphorus and soluble phosphorus are 0.02 mg/L and 0.01 mg/L respectively (MMSD Oct. 2004), and were utilized for the purposes of this report. The current EPA criterion (total phosphorus) for Ecoregion VII which includes Wisconsin is 0.08 mg/L (USEPA 2000). The planning standard utilized by the Southeastern Wisconsin Regional Planning Commission (SEWRPC 2007) for total phosphorus is 0.1 mg/L.

Nearly all phosphorus data in Underwood Creek, both total and soluble, exceeded the recommended maximum concentrations at every site (Figures 27, 28, 29, 30). Much of the phosphorus data were several fold higher than the recommended amounts.

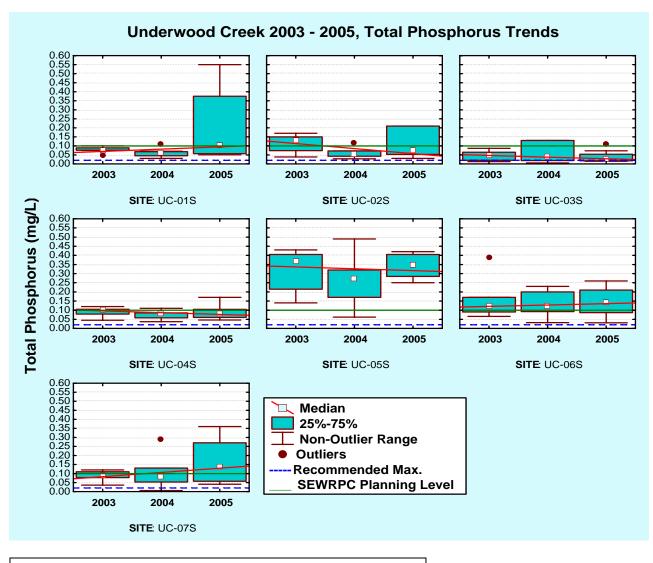
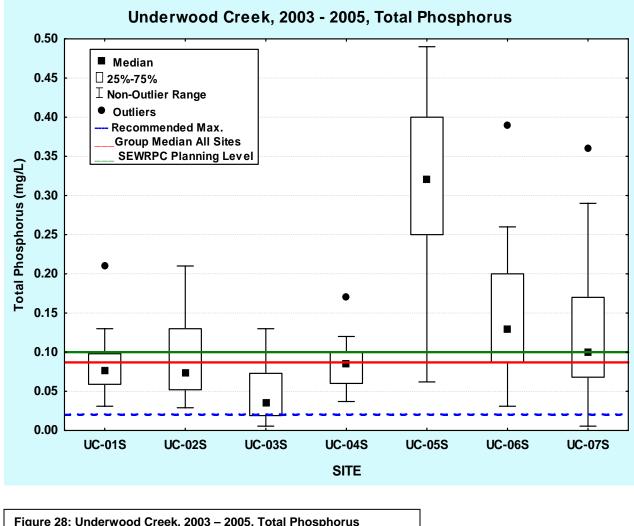
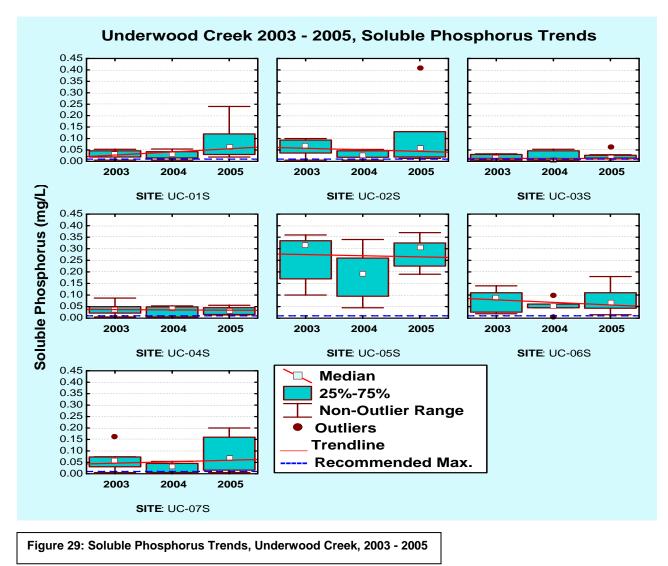



Figure 27: Total Phosphorus Trends, Underwood Creek, 2003 - 2005

Almost all of the total phosphorus values (Figure 27, 28) at all Underwood Creek sites were above the recommended maximum concentration for total phosphorus, indicating nutrient rich conditions. All of the median values at all sites were above the recommended maximum. Additionally, all sites except UC-03 displayed at least one yearly median value above the SEWRPC planning level of 0.10. UC-02 and to a lesser extent, UC-05 had decreasing trendlines; while UC-01, UC-06 and UC-07 displayed increasing trends. The trendlines at the other UC sites were generally steady or slightly declining. In terms of the highest total phosphorus values for all three years examined, UC-05 was the worst site; with all total phosphorus values exceeding the recommended maximum and nearly all values exceeding the SEWRPC planning level. This also verifies the "very bad" WQ subindex rating for all three years at this location. The high in-stream phosphorus content at UC-05 most certainly contributed to the lowest and worst overall WQI ranking of all sites. Total phosphorus values were the lowest at UC-03 when compared to other UC sites for the three year study period. Nearly all of the values were below the SEWRPC planning level. In fact, the WQ subindex was always ranked as


"fair" at this site. These values contributed to the highest and best overall WQI ranking of all Underwood Creek sites.

Recommended Maximum = 0.02 mg/L

Looking at the combined data (all years) UC-05 had the highest median value of all sites while UC-03 had the lowest median, as expected from previous discussion. This is consistent with the WQI which ranked UC-05 as "very bad" and UC-03 as "fair". It is possible that one source of elevated phosphorus at UC-05 is the Lake Evinrude outfall. WDNR data for the years 2000 – 2004 indicated values that were 10 times greater than what is needed to determine a eutrophic condition (nutrient rich, high productivity, possibility of extensive algal blooms and aquatic plant growth) Total phosphorus values were in the 500 – 540 μ g/L range; eutrophic conditions are indicated with values > 50 μ g/L (Sabre 2006). UC-03 was rated as the best site by the WQI and was the only site that experienced "fair" water quality total phosphorus subindex ratings for all three years. The group median (all sites, all years) was well above the recommended maximum value (Figure 28), but was below the SEWRPC planning level. The individual site medians and almost all values were also above the recommended maximum. UC-01, UC-02, UC-03, and UC-04 median values were below the SEWRPC planning level while UC-05 and UC-06 were above the planning level. The median value at UC-07 was mainly at the SEWRPC planning

level. UC-03 and UC-07 were the only sites that displayed some total phosphorus values below the recommended maximum.

Soluble phosphorus was similar to total phosphorus in Underwood Creek with most of the values above the recommended maximum concentration for soluble phosphorus (Figures 29, 30). UC-03 had median values either at or below the recommended concentration and the values here were generally steady. In terms of soluble phosphorus, UC-03 was the best site. In fact, the WQI subindex for soluble phosphorus was always ranked as "fair" to "good" during the three year study period. Again, UC-05 was the worst site and these high values most certainly contributed to the low WQI ranking. A slight increasing trend was observed at UC-01 and UC-07. Slight decreasing trends were noted at UC-02, UC-05, and UC-06. The remaining sites displayed relatively steady trends. None of these trends were significant.

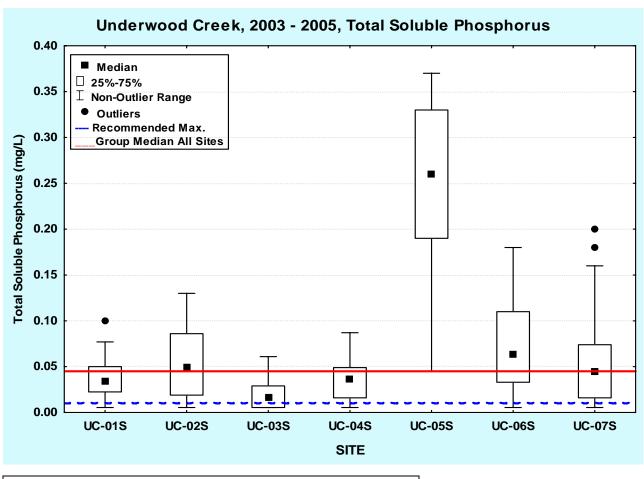
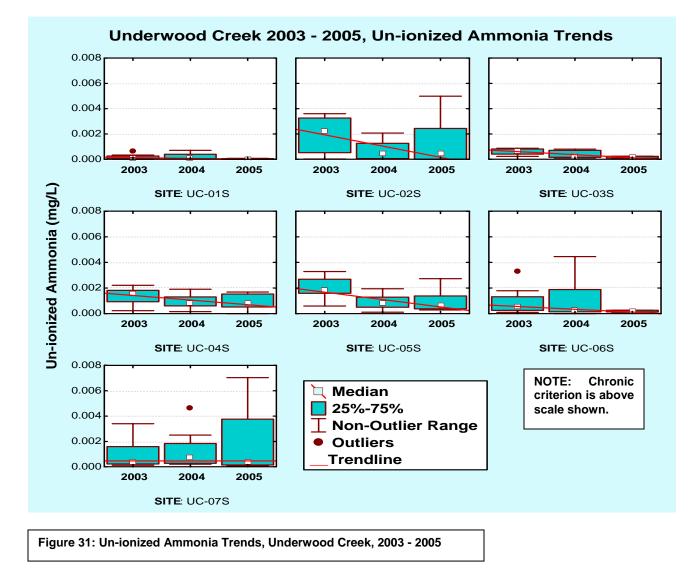
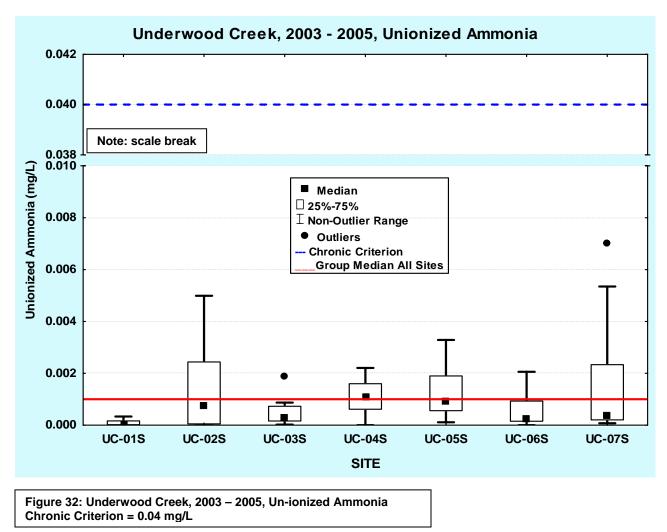


Figure 30: Underwood Creek, 2003 – 2005, Soluble Phosphorus Recommended Maximum = 0.01 mg/L


Looking at the combined data, UC-05 by far, exhibited the highest median value of all sites while UC-03 had the lowest median. The three year median at UC-05 was greater than 3 times the median values at other Underwood Creek sites. Again, this is consistent with the WQI which ranked UC-05 as "very bad" and UC-03 as "fair". UC-03 was rated as the best site by the WQI. The group median (all sites, all years) was well above the recommended maximum value of 0.01 mg/L (Figure 30). The individual site medians and almost all values were also above the recommended maximum. UC-05 was the only site that did not display some values below the recommended maximum. UC-03 had some values at and below the recommended maximum and almost all of the soluble phosphorus data was below the group median.

Water Quality Trends – Nitrogen Series

Un-ionized Ammonia


Ammonia is a compound normally found in low concentrations in most waters. Present in wastewater discharges, it can also be formed from the degradation of nitrogenous organic matter. The available evidence indicates that the toxicity of ammonia can depend on ionic composition, pH, and temperature. The mechanisms of these effects are poorly understood, but

the pH dependence strongly suggests that joint toxicity of un-ionized ammonia and the ammonium ion is an important component (USEPA 1999). Un-ionized ammonia is the more toxic form, because it is a neutral molecule and thus is able to diffuse across the epithelial membranes of aquatic organisms much more readily than the charged ammonium ion (USEPA 1999). In one study, the LC_{50} (lethal concentration to kill 50% of the population) for nonsalmonid fish ranged from 0.14 to 4.60 mg/L of un-ionized ammonia. For salmonid fish, the LC_{50} was 0.083 to 1.09 mg/L (AWMFH 1992). Invertebrates and aquatic plants are more tolerant of unionized ammonia than fish (AWMFH 1992).

Ammonia criteria were developed by the USEPA for the protection of aquatic life. The Wisconsin State Surface Water Warm Water Chronic Criterion for un-ionized ammonia is 0.04 mg/L (Figures 31, 32). Many sites registered values below the method detection limit (0.0002 mg/L). 100% of the values for un-ionized ammonia were below the chronic criterion. The trend at sites UC-02, UC-03, UC-04 UC-05, and UC-06 was decreasing. The trend at UC-01 and UC-07 was steady. These low ammonia values contributed to better water quality ratings in the WQI analysis.

UC-04 followed by UC-05 had the highest median values of all sites while UC-01, followed by UC-03, UC-06, and UC-07 had the lowest median values. The group median (all sites, all years) was well below the Chronic Criterion (Figure 32), as were the individual site medians and all values including outliers. UC-03 and UC-01 values were entirely below the group median with the exception of outliers at UC-03.

Total Kjeldahl Nitrogen (TKN)

Total Kjeldahl Nitrogen is a useful measure of the organic content of a water source. TKN is the combination of organic nitrogen and ammonia nitrogen. There are no State of Wisconsin standards for TKN; therefore, an EPA criterion was used for this evaluation. Southeast Wisconsin is included in the EPA's level III Ecoregion 53. This comes from the Ambient Water Quality Criteria Conditions for Rivers and Streams in Nutrient Ecoregion VII (USEPA 2000). The intent of developing ecoregional nutrient criteria is to represent conditions of surface waters that are minimally impacted by human activities and thus protect against the adverse effects of nutrient over-enrichment from cultural eutrophication. State water quality inventories and listings of impaired waters consistently rank nutrient over-enrichment as a top contributor to use impairments. The values used generally represent nutrient levels that protect against adverse effects of over-enrichment (USEPA 2000).

The EPA values used represent the 25th percentile (P25) of the population (all data collected from all seasons) of all streams represented in the region since no reference stream has been identified. The P25 value for Ecoregion 53 is 0.65 mg/L. This would indicate that all Underwood Creek sites for almost all years exhibited annual median values that surpassed EPA nutrient criteria (Figures 33, 34); therefore, over-enrichment is a problem with regard to TKN.

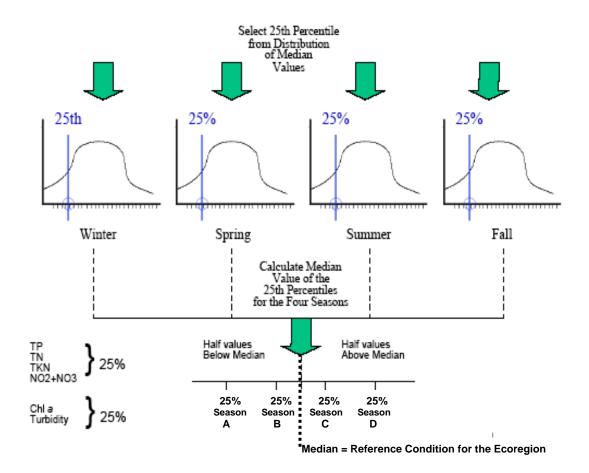
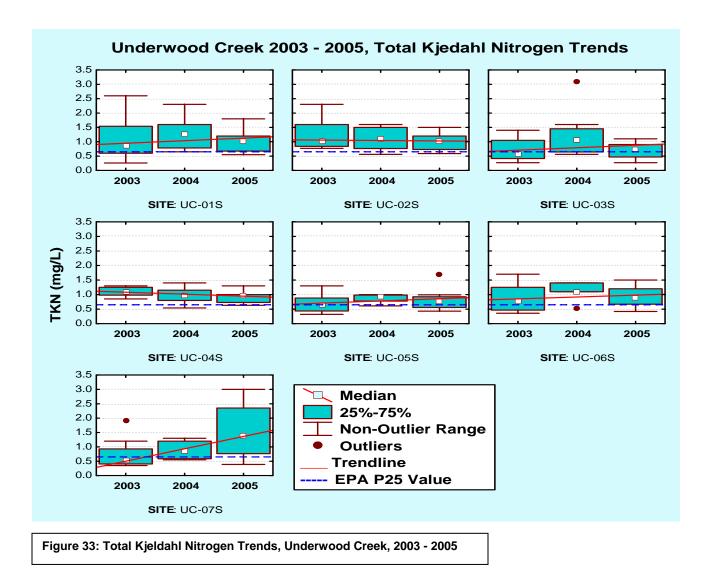
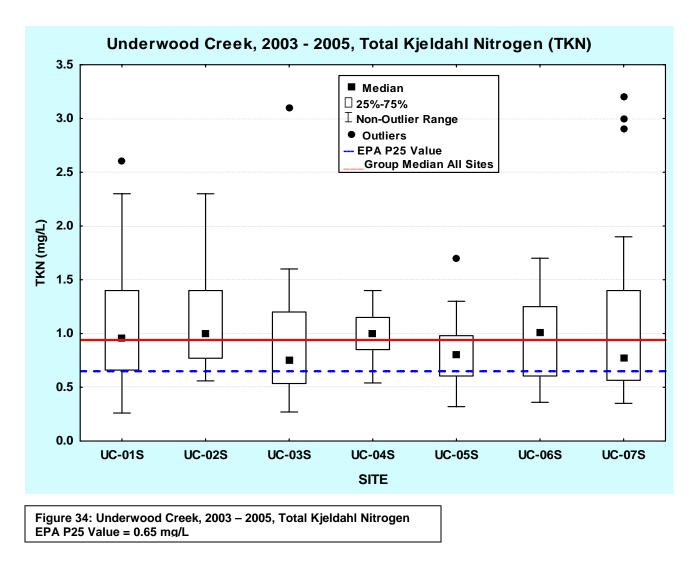




Illustration from: USEPA December 2000. Ambient Water Quality Criteria Recommendations.

Most of the total kjeldahl nitrogen (TKN) values at all Underwood Creek sites were above the EPA P25 value and most of the median values at all sites were above the EPA nutrient criterion (Figure 33). The trend is site dependent. Certainly, UC-07 exhibited the strongest trend which was increasing (water quality degradation). Very slight increasing trends were seen at UC-01, UC-03, UC-05, and UC-06, while UC-02 remained steady and UC-04 displayed a slight decreasing (toward improving water quality) trend.

In terms of the TKN values, UC-02, UC-04, UC-06, and UC-01 were the worst sites. UC-03, followed by UC-05 were the best sites.

UC-02, UC-04, and UC-06 had the highest median values of all sites and were all above the group median (all years, all sites), while UC-03 had the lowest median and was below the group median. This is consistent with the WQI which ranked UC-03 as "fair". UC-03 was rated as the best site by the WQI. The group median (all sites, all years) was above the EPA P25 Value (Figure 34). The individual site medians and almost all values were also above the EPA criterion. UC-03 had the most values below the P25 criterion.

Nitrates and Nitrites

Nitrates can be toxic to warm-blooded animals. High rates of nitrification (a biological process in which ammonia is converted to nitrite and nitrate) can severely deplete the dissolved oxygen content of water. Sources of nitrate in surface water include domestic wastewater, leaching from soil, barnyard or feedlot runoff, industrial wastewater discharges, and land use. Nitrate concentrations can be elevated due to fertilizers on lawns and gardens. These fertilizers become aquatic pollutants during stormwater runoff events. Nitrate is a major nutrient necessary for plant growth and is produced during nitrification. Nitrites are the intermediate products of nitrification and are usually found in low concentrations in the natural environment. Nitrites are normally a transitory phase between nitrification and denitrification (a process where nitrate is

converted to gaseous nitrogen) (AWMFH 1992). Nitrite concentrations in surface water can increase if enriched bottom material (excess nutrients) is disturbed and resuspended into the water column (AWMFH 1992).

State of Wisconsin surface water standards do not currently exist for nitrate and nitrite; therefore the EPA criterion was used for evaluation. The EPA values used represent the 25th percentile of the population (all data) of all streams represented in the region since no reference stream has been identified. Values for nitrate and nitrite have been added together for a P25 of 0.94 mg/L

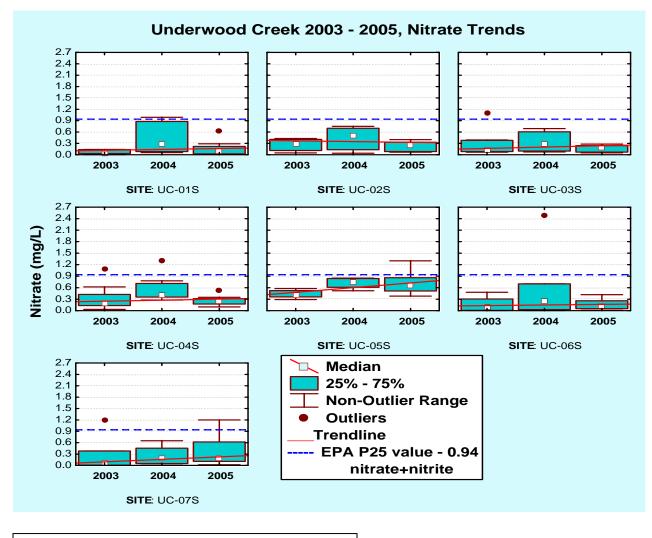
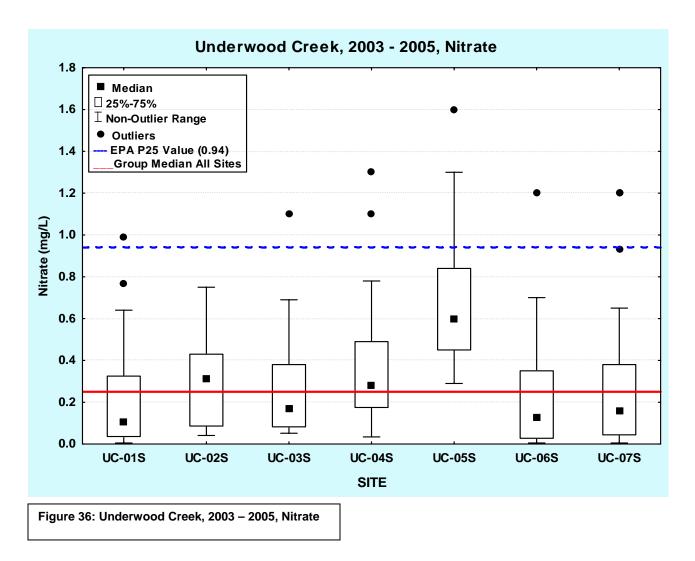
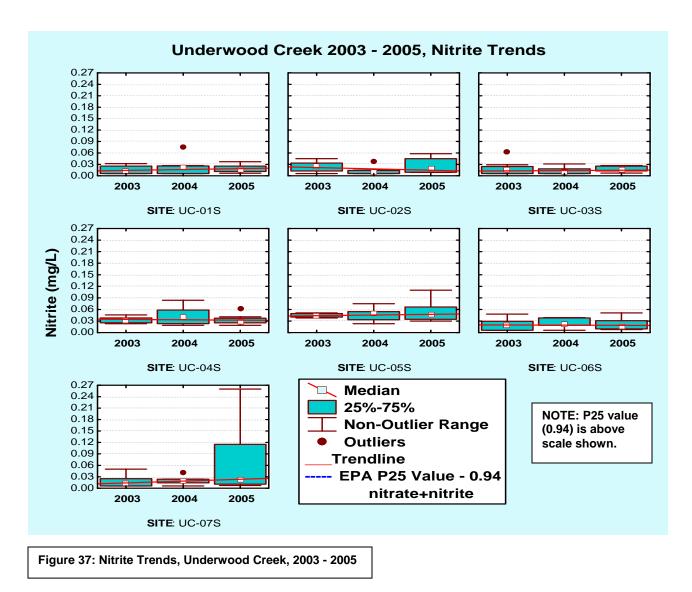
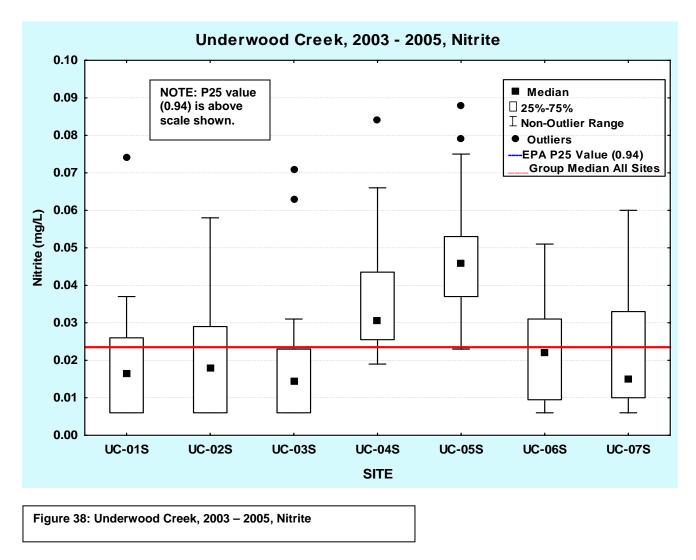




Figure 35: Nitrate Trends, Underwood Creek, 2003 - 2005


Looking at nitrate values (Figures 35, 36), Underwood Creek sites would not be considered over-enriched for all years sampled. All median values and all values that reside in the $25 - 75^{\text{th}}$ percentiles were below the criterion. There was a slight increasing trend at UC-03, UC-05, and UC-07 while all other sites remained generally steady. The year, 2004, exhibited the highest nitrate values. UC-05 generally had the highest median nitrate values.

The combined data clearly illustrates that UC-05 had the highest median value of all sites and was well above the overall group median (all years, all sites), while UC-01, UC-03, UC-06, and UC-07 had the lowest medians and were below the group median. The group median was well below the EPA P25 Value (Figure 36). The individual site medians and almost all values were also below the EPA criterion. UC-01 had the most values below the P25 criterion, while UC-05 had some values (other than outliers) above the criterion.

100% of the nitrite values (Figures 37, 38) were well below the EPA P25 value at all Underwood Creek sites. A discernible trend was not displayed at any site, with site specific median values throughout the three year period remaining generally steady. UC-04 and UC-05 had median values generally at or above 0.03 mg/L while the other Underwood Creek sites were generally below 0.03 mg/L. UC-07 in the year 2005 showed the greatest variability in its' data.

Again, the combined data clearly illustrates that UC-05 had the highest median value of all sites and was well above the overall group median (all years, all sites). UC-04 was also above the group median. UC-01, UC-02, UC-03, UC-06, and UC-07 were all below the group median value. UC-03 and UC-07 had the lowest median values. The group median was well below the EPA P25 Value (Figures 37, 38).

Water Quality Trends – Specific Conductance

Specific conductance is a measure of the ability of water to conduct an electrical current. It is highly dependent on the amount of dissolved solids (such as salt) in the water. The principal inorganic anions (negatively charged ions) dissolved in fresh water include the carbonates, chlorides, sulfates, and nitrates; the principal cations (positively charged ions) are sodium, potassium, calcium, and magnesium (USEPA 2002, Stormwater Effects Handbook). Pure water, such as distilled water, will have a very low specific conductance, and sea water will have a high specific conductance. Rainwater often dissolves airborne gasses and dust while it is in the air, and thus often has a higher conductance than distilled water (USGS 2006, Water Science for Schools) Specific conductance can be used as a pollutant tracer and is helpful in monitoring

changes to the chemical makeup of the water column. Conductance measurements provide an indication of water ion and dissolved solids concentrations. A water quality standard, criterion, or maximum was not used for comparison with this data.

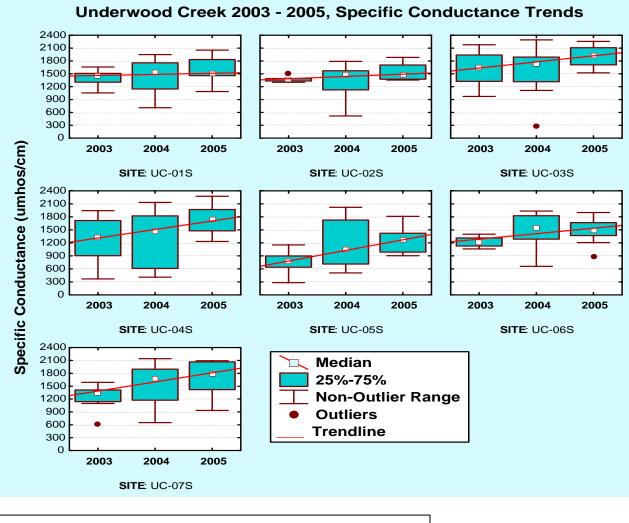
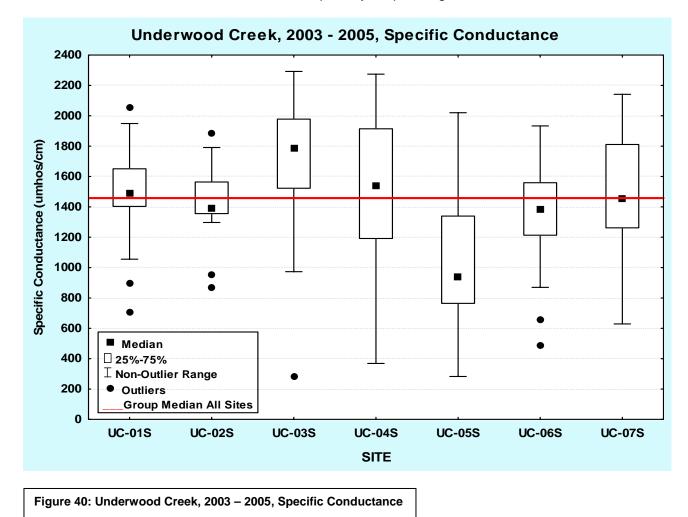
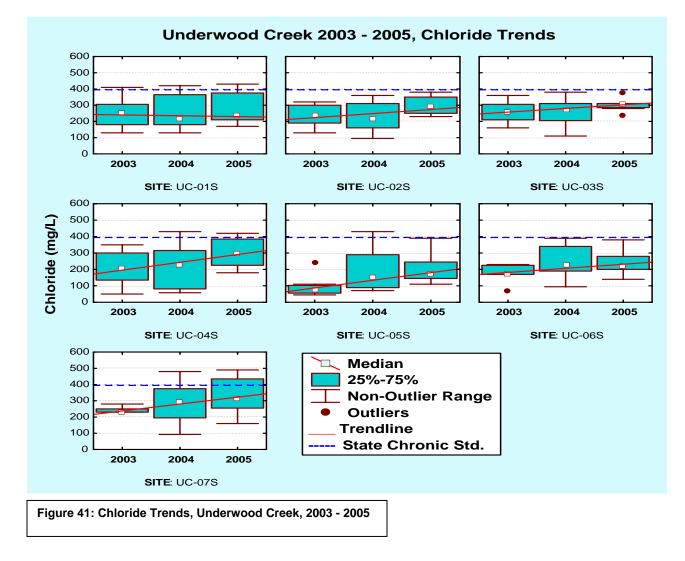



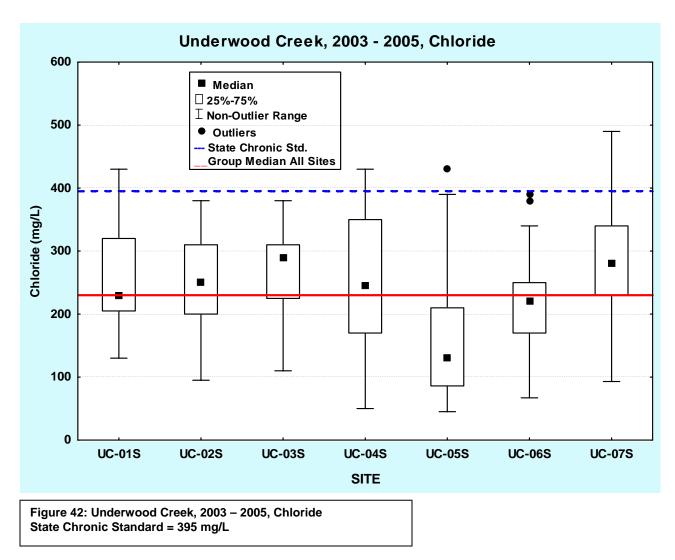
Figure 39: Specific Conductance Trends, Underwood Creek, 2003 - 2005

UC-03 had the highest median specific conductance (Figures 39, 40) while UC-05 had the lowest median. UC-03 lies on the mainstem of Underwood Creek, just before its confluence with the south branch of the creek. It is possible that the high specific conductance levels at this site are indicative of the total accumulation of pollutant loading on the creek to this point. The creek could reasonably be expected to contain higher concentrations of various ions that could be measured by specific conductance. The lowest median at UC-05 could be influenced by the Milwaukee County Zoo's Lake Evinrude outfall located immediately above the sampling point at this site; which basically serves as a stormwater detention pond and also may contain cooling water. Lake water and stormwater generally have lower specific conductance values than creek/river water. WDNR (2003-2004) reported specific conductance values generally around

500 umhos (WDNR 2008). All sites except UC-01 and UC-02 show a fairly steep increasing trend in regard to conductance values.


All of the sites are located near to or next to major roadways and all lie in urbanized areas (increased impervious surface). Road run-off could potentially contribute substances that might increase conductance at these sites. The impact of run-off on specific conductance would be dependent on the volume of water entering the creek and how concentrated the substances are (for example, road salt). Precipitation is another factor that can affect specific conductance. While the initial runoff during a rain event may contain substances that increase conductivity, it is not unusual to see conductance values temporarily drop during a rain event.

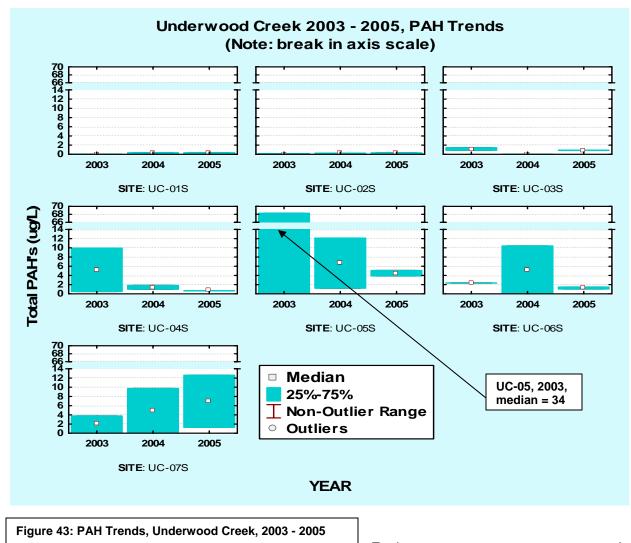
The combined data clearly illustrates that UC-03 had the highest median value of all sites and was well above the overall group median (all years, all sites). UC-04 and UC-01 were also above the group median. UC-02, UC-05, UC-06, and UC-07 were all at or below the group median value.


Water Quality Trends – Chloride

Chlorides, one of many dissolved ions found in surface water, have electrochemical and catalytic functions in both plant and animal metabolic processes. Chloride may get into surface water from several sources including: rocks containing chlorides; agricultural runoff; wastewater from industries; water softeners; wastewater treatment plant effluent; and road salting. Chloride inputs from road salting are of particular concern in this area and seasonal data have shown generally higher chloride values occurring in the winter months (USGS 2007). The USGS (2007) had noted a positive relationship between chlorides and increasing urban land use in the southeastern Wisconsin area. Chlorides can corrode metals, affect the taste of food products, (lowa 2003) and contaminate freshwater streams and lakes. Freshwater fish and aquatic communities cannot survive in high levels of chlorides. Excessively high concentrations of chloride can cause osmotic shock in freshwater organisms. They also serve as a good tracer of water quality. The State Water Quality Criteria for chlorides are 757 mg/L for the Acute Criteria and 395 mg/L for the Chronic Criteria (WDNR 2000).

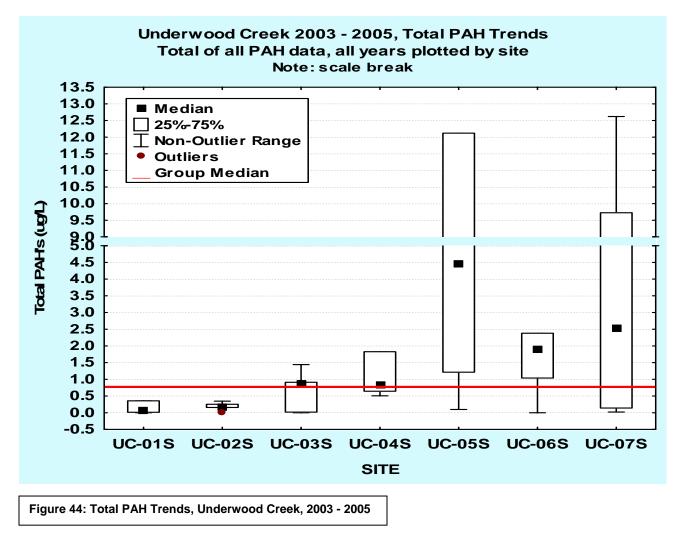
Most of the chloride values in Underwood Creek (all sites) fell below the chronic value of 395 mg/L throughout the three-year sampling period (Figures 41, 42). Median and generally the

majority of values were the highest at UC-03 and UC-07. The lowest median and generally lowest chlorides were found at UC-05. Trends are increasing at all Underwood Creek sites except UC-01 which exhibited a steady trend. The chloride data supports the rising specific conductance trends seen in the creek and generally supports the conductivity data overall.


The combined data clearly illustrates that the majority of chloride values were below the State Chronic Standard of 395 mg/L and that UC-03 had the highest median value of all sites, followed by UC-07. Again, this could be indicative of accruing pollutant loading to Underwood Creek. UC-03 and UC-07 were well above the overall group median (all years, all sites). UC-02 and UC-04 were also above the group median. UC-01, UC-05, and UC-06 were all at or below the group median value with UC-05 being well below the group median and State Chronic Standard. As previously discussed, UC-05 is most likely influenced by the Lake Evinrude outfall. In the case of chlorides (as in specific conductance), the outfall water could be serving as a dilutional factor.

Water Quality Trends – Toxic Pollutants

Toxic pollutants are generally substances that may cause disease, birth defects, or death or may negatively affect reproduction, development, or disease resistance (UWEX 1995). The impacts of these chemicals are of environmental concern for both aquatic systems as well as human health.


Polycyclic Aromatic Hydrocarbons (PAH's)

Polycyclic Aromatic Hydrocarbons (PAH's) are formed from the incomplete combustion of fossil fuels and organic matter. There are more than 100 chemicals classified as PAH's. They are also a component of many petroleum products, creosote, asphalt, cigarette smoke, and vehicle exhaust. A majority of PAH's are considered carcinogenic and high concentrations in sediment are associated with high incidences of liver tumors in fish. Water quality standards or criteria were not available for comparison with this data.

Leach year represents two sample values from the two event samplings (event sampling described on page 16 – Sampling Schedule and Variables) therefore, caution should be utilized when examining data trends. All

values in each year for total PAH's at UC-01, UC-02, and UC-03 fall below 1 μ g/L and the trendline for each of these sites is steady (Figure 43). The trend for UC-04, UC-05, and UC-06 is declining. The trend at UC-07 is increasing. The highest median occurs at UC-05 while the lowest occurs at UC-01 and UC-02. Caution should be taken in regard to all trends due to the very limited number of data points.

The combined data (Figure 44) shows that for all years examined, the lowest medians occurred at UC-01, UC-02, UC-03, UC-04, and UC-06 with UC-02 having the lowest median of all sites. The highest median occurred at UC-05 which also had the highest extreme value of all sites, followed by UC-07. UC-05 and UC-07 individual medians were well above the overall group median (all years, all sites). UC-03, UC-04 and UC-06 were also above the group median. UC-01 and UC-02 were below the group median value.

Additionally, wet event PAH's were compared to dry event data. Generally, PAH's were present in higher concentrations during wet events than during dry periods (again, caution should be exercised as this analysis was based upon only 3 wet data points and 3 dry data points). Whenever dry PAH values exceeded wet PAH values, it occurred in the year 2005. This is most likely due to rain that took place during the dry event sampling in 2005 (Appendix C – graph).

Mercury

Mercury is a highly toxic element that is found naturally and as an introduced contaminant in the environment (USGS 2000). Mercury can be released into the atmosphere from fuel combustion and industrial processes. It is also present in many fungicides, bactericides, paints, medical wastes, and paper products. Mercury enters the aquatic environment largely from atmospheric deposition but in some cities, scrap metal piles can be a significant source. According to USGS monitoring, scrap metal piles are the primary source of mercury in the area surrounding the Milwaukee harbor (UWEX 1995). Once in the surface water, mercury enters a complex cycle in which one form can be converted to another, of which methylmercury is the most toxic form (USGS 2000). Mercury can have acute and chronic toxic effects on aquatic organisms as well as humans. Some of these include damaging developing embryos and altering genetic and enzymatic systems (USGS 2000).

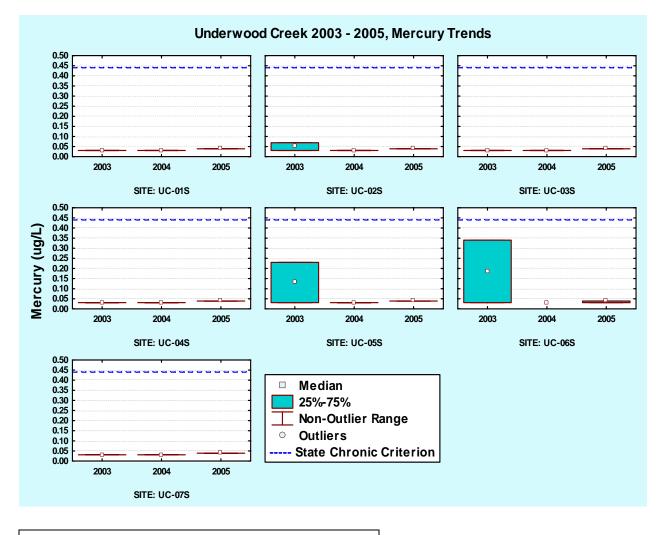
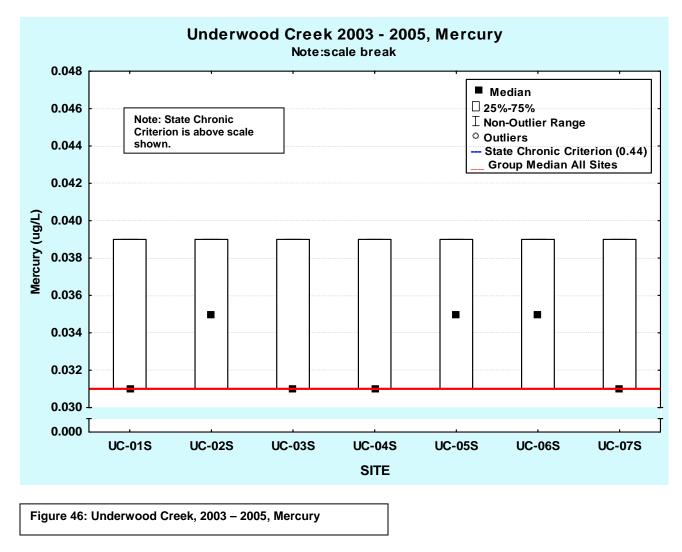



Figure 45: Mercury Trends, Underwood Creek, 2003 - 2005

The State Chronic Criterion (Limited Aquatic Life) value for mercury is 0.44

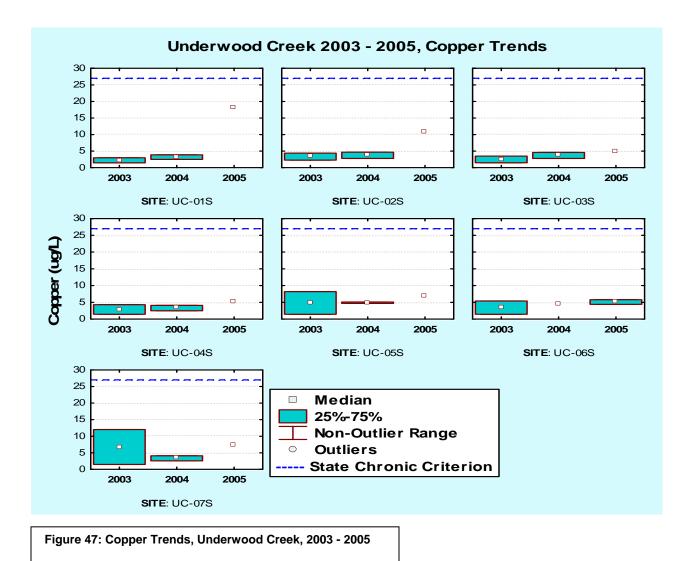
µg/L (WDNR 2000). Each year represents two sample values from the two event samplings (event sampling described on page 16 – Sampling Schedule and Variables) therefore, caution should be exercised when looking at any data trends. Mercury data for UC-01, UC-03, UC-04,

and UC-07 resulted in levels that were less than 0.05 μ g/L and produced a flat trend (Figure 45). The data trend for UC-02 was also steady even though some mercury values were above 0.05 in 2003. UC-05 and UC-06 had mercury detected at higher values in 2003, mercury levels returned to less than 0.05 μ g/L in 2004 and 2005. This resulted in a declining trendline at the two sites. All Underwood Creek sites displayed mercury levels below the State Chronic Criterion.

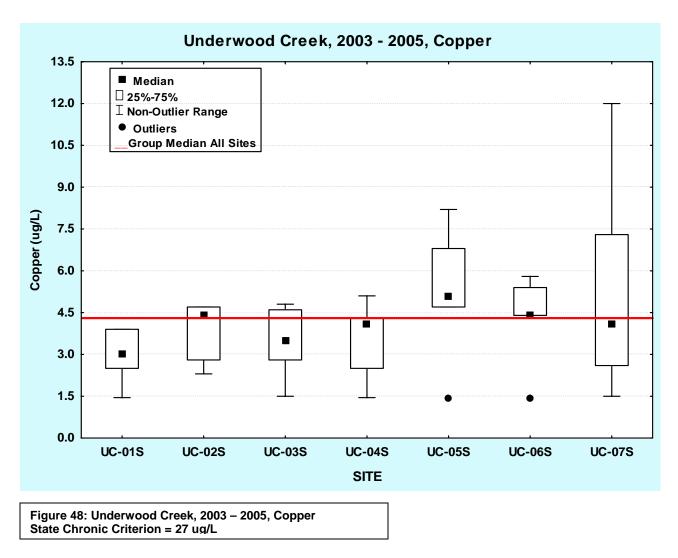
The combined data (Figure 46) again, clearly illustrates that all mercury values for the three year period examined were well below the State Chronic Criterion of 0.44 ug/L. UC-01, UC-03, UC-04, and UC-07 all exhibited medians that were at the group median (all data, all sites) while UC-02, UC-05, and UC-06 were above the group median.

Water Quality Trends – Heavy Metals

Heavy metals are natural components of all ecosystems and are essential trace elements for plants and animals. Human activities have increased the input of metals from land to water. Sources of metals include; urban runoff, scrap metal piles, emissions from burning coal and oil, municipal waste, paints, plated metals and wood that contain preservatives (UWEX 1995). In high concentrations, heavy metals including cadmium, chromium, nickel, copper, zinc, and lead are of environmental concern and can be moderately to highly toxic to plants, fish, and other aquatic organisms, as well as to humans. Heavy metals can display both chronic and acute toxicity. Some metals are known to be carcinogenic. Water hardness (specifically the ions causing hardness) can have a dramatic effect on water quality criteria and many of the heavy metal criteria depend on water hardness (EPA, Stormwater Effects Handbook). Hardness alleviates metals toxicity, because calcium and magnesium ions help keep fish from absorbing metals such as lead, arsenic, and cadmium into their bloodstream through their gills. The greater the hardness, the more difficult it is for toxic metals to be absorbed through the gills (USGS, General Information on Hardness).

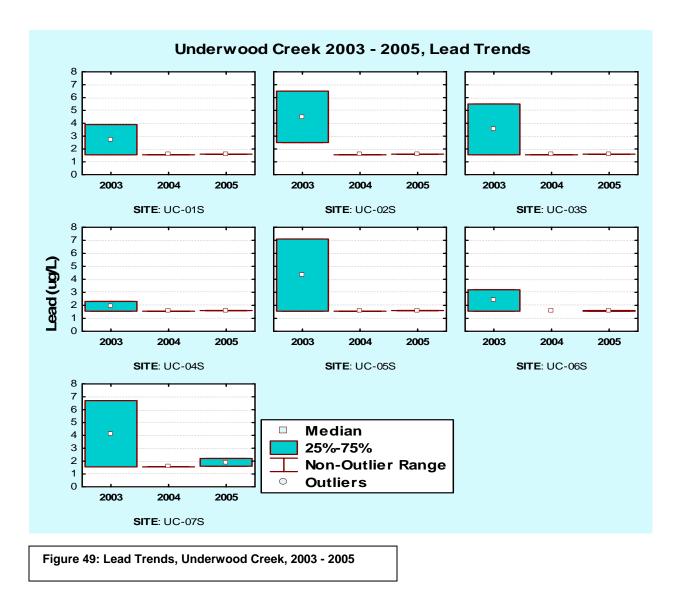

It should be noted that the State of Wisconsin Discharge Permit for Surface Waters (Wisconsin Pollutant Discharge Elimination System Permit – WPDES) specifies that non-detected analytical results (value is below the method detection limit) should be recorded as a "0" value for purposes of calculating averages for discharge compliance reports. In order to maintain consistency among years of monitoring data and with permit specifications, the number "0" has been applied to all non-detected values for calculation purposes.

No heavy metals were shown to be toxic according to Wisconsin State Chronic Criteria. Copper, lead, zinc, cadmium, chromium, and nickel data are presented below (the criteria are based upon a hardness of 260).


NOTE: Each year represents only two sample values from the two event samplings (event sampling described on page 16 – Sampling Schedule and Variables) so caution should be exercised when examining any data trends.

Copper

Copper in the environment has its origins from natural as well as human sources. It is an abundant trace element found in the earth's crust and is a naturally occurring element that is generally present in surface waters (EPA 2007). Copper is a micronutrient for both plants and animals at low concentrations and is recognized as essential to virtually all plants and animals; however, it may become toxic to some forms of aquatic life at elevated concentrations (EPA 2007). Major cultural inputs of copper include preservative, industrial processes, pesticides, and corrosion of copper piping. Other anthropogenic sources with copper-bearing discharges include mining, leather and leather products, fabricated metal products, and electric equipment (EPA 2007). The Wisconsin State Surface Water Warm Water Chronic Criterion for copper is 27 μ g/L.


Copper data for the three-year sampling period on Underwood Creek were below the State Warm Water Chronic Criterion, without exception (Figure 47). Copper trends at UC-03, UC-04, UC-05, UC-06, and UC-07 were slightly increasing. Copper trends at UC-01 and UC-02 were sharply increasing due to the considerably higher values in the data set being achieved in 2005. These values were still well under the chronic criterion. UC-05 exhibited the highest median values of all Underwood Creek sites, while UC-01 had the lowest median copper values of all sites. Overall, the year 2005 had the highest copper values and the year 2003 had the lowest copper values.

The combined data (Figure 48) shows that for all years examined, the lowest medians occurred at UC-01, UC-03, and UC-04 with UC-01 having the lowest median of all sites. The highest median occurred at UC-05, followed by UC-06 and UC-02, which were above the overall group median (all years, all sites). UC-01, UC-03, UC-04, and UC-07 were below the group median value. All combined data were well below the Wisconsin State Warmwater Chronic Criterion of 27 ug/L.

Lead

Lead can occur naturally or as a result of human inputs. It has historically been used as an indicator for other toxic pollutants in urban stormwater (UWEX 1995). Lead is a human health concern as well as an aquatic life concern. Its human health effects include damage to the nervous system and kidneys, high blood pressure and digestive disorders (UWEX 1995). Precipitation, dry decomposition, the burning of coal and leaded gasoline, battery production, lead-based paints, industrial and domestic wastewater discharges, and urban runoff affect lead concentration levels. The Wisconsin State Warm Water Chronic Criterion for lead is 70 µg/L.

One hundred percent (100%) of the lead data on Underwood Creek for the three-year sampling period were well below the Wisconsin Warm Water Chronic Criterion (Figure 49). UC-04 had the lowest overall lead concentrations. UC-05, UC-07, and UC-02 had the highest overall lead concentrations, respectively. Overall, the year 2003 exhibited the highest median values while the year 2004 exhibited the lowest median values (note that 2005 values were very close to 2004). The trend at all sites was noticeably downward, except at UC-04 which displayed a slightly downward trend.

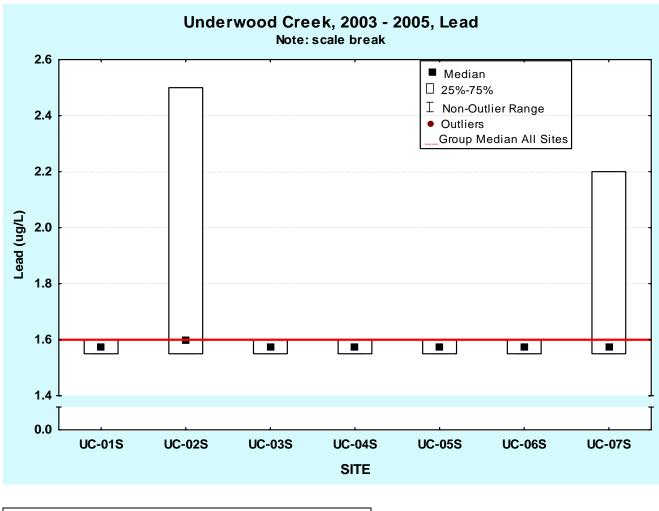
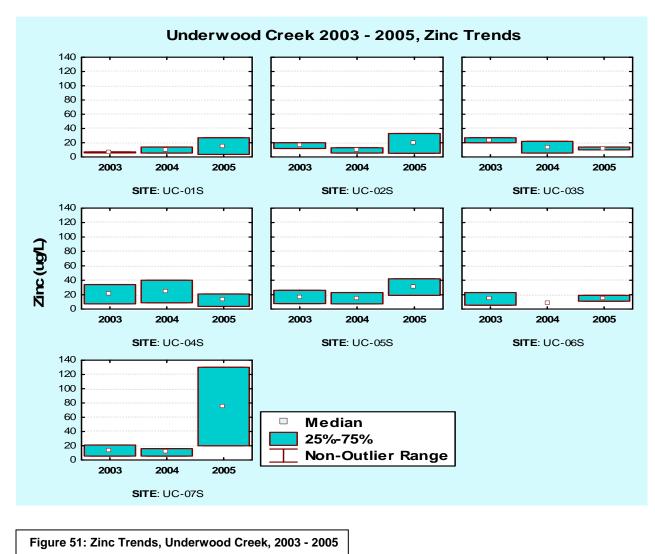



Figure 50: Underwood Creek, 2003 – 2005, Lead State Chronic Criterion = 70 ug/L

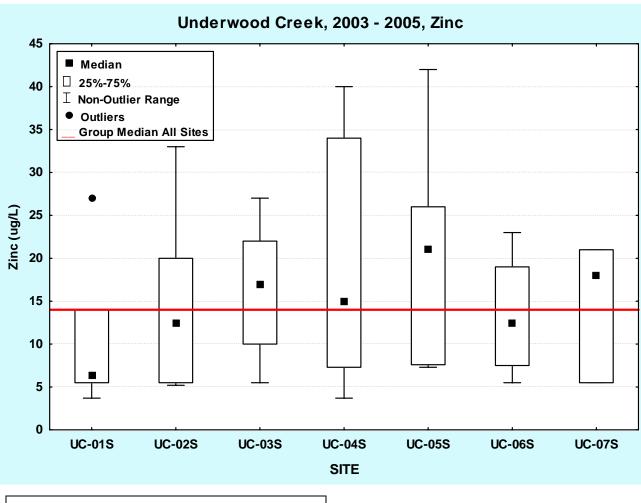
The combined data (Figure 50) shows that the medians for all sites examined were virtually the same with UC-02 being slightly higher than the other sites. The individual site medians were below the group median except for UC-02 which was at the group median. All combined data were well below the Wisconsin State Warmwater Chronic Criterion of 70 ug/L.

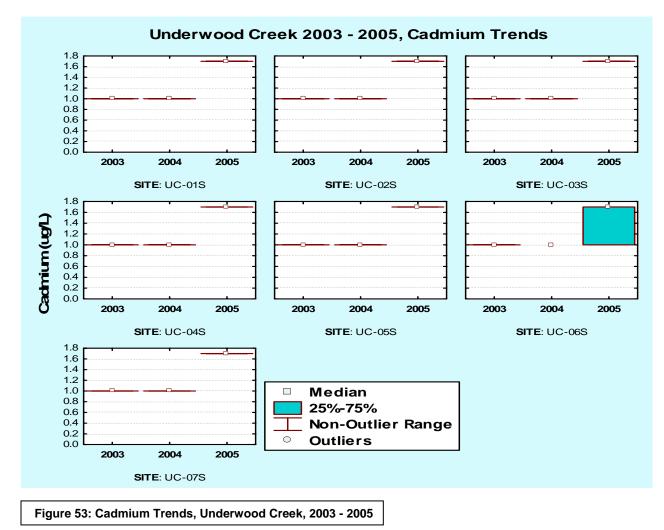
Zinc

Zinc is fairly common in nature. Zinc typically does not create human health problems but it can be toxic to aquatic life (UWEX 1995). Industrial and cultural sources include galvanized pipes, brass, other alloys, rubber vulcanization, paints, cosmetics, drugs, fertilizers, and insecticides. Another primary source is vehicle traffic. Concentrations of zinc appear to be directly correlated with the volume of traffic on streets that drain into the storm sewer system (UWEX 1995). USGS (1998) hypothesized whether the increase in vehicular use (auto use outstripped population growth by 4 times) contributed to rising or steady zinc concentrations despite remedial steps taken in White Rock Lake (Texas). The hypothesized connection was attributed to automobile tires which contain zinc; each time the tire runs over the road, it leaves a residue of zinc that can

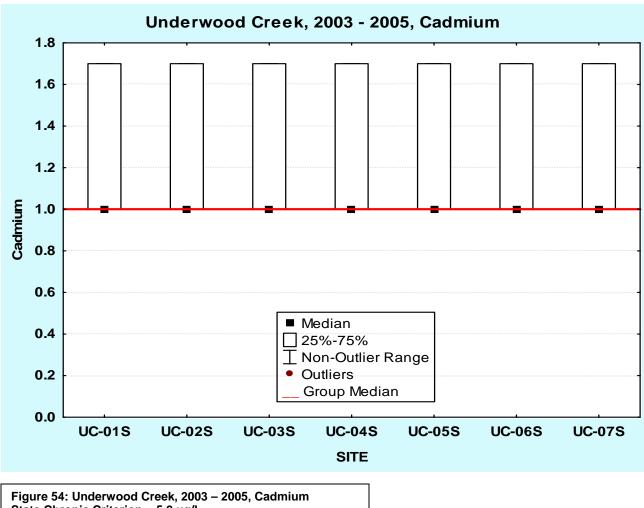
run off into streams and enter ground-water systems (USGS 1998). The Wisconsin State Surface Water Warm Water Chronic Criterion for zinc is 278 µg/L.

Zinc data for the three-year sampling period on Underwood Creek were 100% below the State Warm Water Chronic Criterion and are presented above (Figure 51). Overall, the year 2005 exhibited the highest median values while the year 2004 exhibited the lowest median values. UC-06 had a flat trend for the three years examined, UC-01, UC-02, UC-05; and UC-07 displayed increasing trends; with the trendline at UC-07 showing an appreciable upward slope. The trendline at sites UC-03 and UC-04 was decreasing.




Figure 52: Underwood Creek, 2003 – 2005, Zinc State Chronic Criterion = 278 ug/L The combined data (Figure 52) shows that for all years studied, the lowest medians occurred at UC-01, UC-02, and UC-06 with

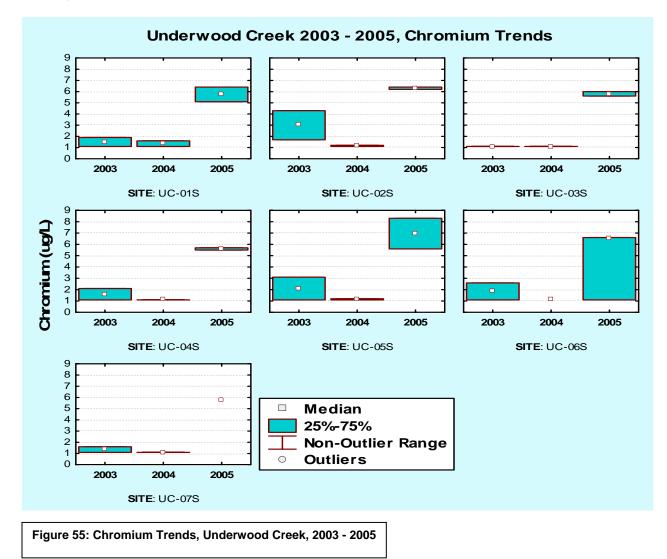
UC-01 having the lowest median of all sites. The highest median occurred at UC-05, followed by UC-07, UC-03 and UC-04, which were above the overall group median (all years, all sites). UC-01, UC-02, and UC-06 were below the group median value. All combined data were well below the State Chronic Criterion of 278 ug/L.


Cadmium

Cadmium is found mainly in the earth's crust and commonly along with zinc and copper deposits. Cadmium is utilized mostly for electroplating and for nickel cadmium batteries, pigments (paint), coatings, stabilizers in plastics and synthetic products, and alloys (CCME 2002). Many of these uses tend to make the element available to water that comes into contact with wastes (Mebane 2006). Cadmium concentrations can become elevated in waters that are influenced by sources such as mining, minerals processing, and combustion of fossil fuel (Mebane 2006). Another source of cadmium is landfill leachate (CCME 2002); it can enter the atmosphere through vaporization at high temperatures in metallurgical processes and fossil fuel combustion (Mebane 2006). Cadmium can be directly released into drinking water from the corrosion of some galvanized plumbing and watermain pipe materials (CCME 2002).

Short-term exposure to cadmium above recommended levels can cause nausea, vomiting, diarrhea, muscle cramps, salivation, sensory disturbances, liver damage, convulsions, shock and renal failure. Long-term exposure above guidelines can potentially cause emphysema, kidney and liver damage, and softening of the bones (CCME 2002). Cadmium is toxic to freshwater fish, invertebrates, and aquatic plants and it is most likely to settle to the bottom sediments where it can affect bottom dwelling aquatic life (CCME 2002). As with other heavy metals, toxicity is affected by water hardness.

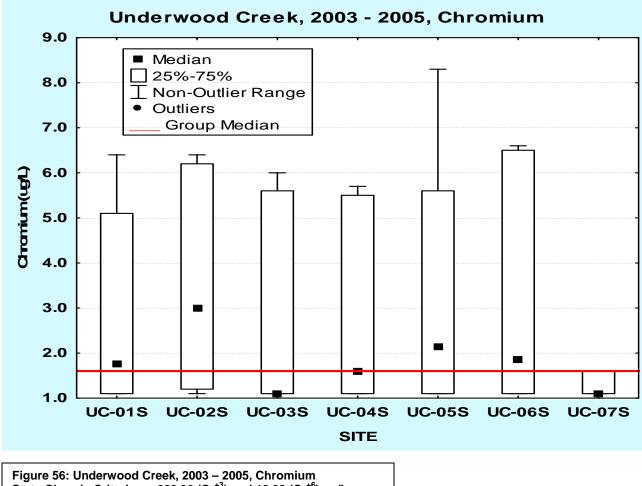
The State of Wisconsin Warm Water Chronic Criterion for cadmium is 5.2 μ g/L. Cadmium values for the three-year sampling period on Underwood Creek were 100% below the State Warm Water Chronic Criterion and are presented above (Figure 53). Overall, the year 2005 exhibited the highest median values. The years 2003 and 2004 had identical median values. All Underwood Creek sites showed an increasing trendline due to the higher medians observed in 2005.



State Chronic Criterion = 5.2 ug/L

The combined data (Figure 54) shows that the medians for all sites examined were the same. The individual site medians were at or equal to the group median. All combined data were well below the State Chronic Criterion of 5.2 ug/L.

Chromium


Chromium can exist in different valent forms $(Cr^{-2} \text{ to } Cr^{+6})$ and occurs naturally and nonnaturally. The most frequently occurring forms are trivalent (Cr^{+3}) and hexavalent (Cr^{+6}) chromium (NPS 1997). Cr^{+3} is naturally occurring and is essential for good health (WDHFS 2000). Cr^{+6} rarely occurs naturally (NPS 1997). Some major industrial sources include chromate pigments in dyes, paints, inks, and plastics; chromates added as anti-corrosive agents to paints, primers and other surface coatings; chrome plating; particles released during smelting of ferrochromium ore; welding fumes from stainless steel or nonferrous chromium alloys; and impurities present in Portland cement (OSHA 2006). Cr^{+6} is the most toxic form causing lung cancer; irritation or damage to the nose, throat, and lung; irritation or damage to the eyes and skin; digestive problems; kidney damage; liver damage; immune system function; and reproductive effects (OSHA 2006). These health effects vary from person to person depending on exposure level and length, mode of exposure (inhalation, touch, oral), individual health, personal habits (smoking, drinking), heredity, and previous exposure to chemicals including chromium and medicines (WDHFS 2000). Cr⁺⁶ has been associated with the following effects to aquatic life: gill damage, abnormal enzyme activity, altered blood chemistry, lower resistance to pathogenic organics, behavioral modifications, disrupted feeding, histopathology, osmoregulatory upset, alterations in populations structure and species diversity indices, and inhibition of photosynthesis (NPS 1997).

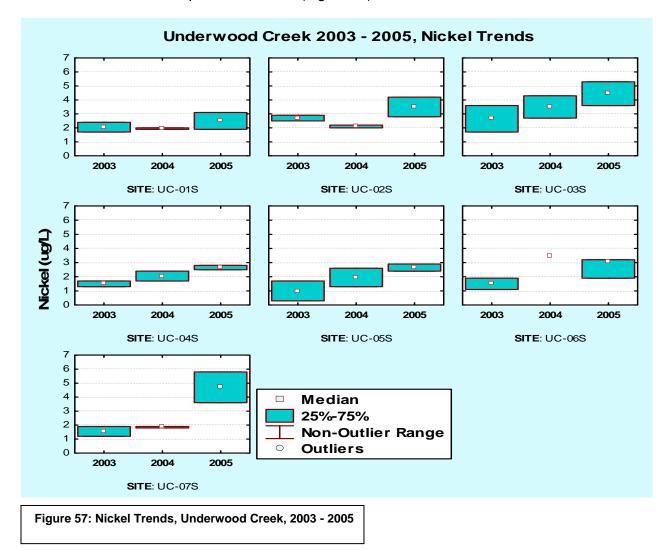
The State of Wisconsin Warm Water Chronic Criterion for chromium is 288.96 (Cr⁺³) and 10.98 (Cr⁺⁶) μ g/L. Chromium values for the three-year sampling period on Underwood Creek were 100% below the State Warm Water Chronic Criterion and are presented above (Figure 55).

Overall, the year 2005 exhibited the highest median values while the years 2003 and 2004 exhibited the much lower and similar median values. All Underwood Creek sites showed an increasing trend most likely due to the much higher median values exhibited in 2005 (in general 4 to 5 times higher than 2003 and 2004). It should be noted that machine (ICP) detection limits (MDL's) in 2005 were adjusted higher by the MMSD Central Laboratory. MDL's changed from 2.2 ug/L in 2003 and 2004 to 6.1 μ g/L in 2005. Therefore due to the aforementioned limited data

(generally 2 data points per year, per site) and the adjusted MDL's, the higher median values noted in 2005 could be a technical artifact and not an environmental change. In general, half of the data fell at or below the MDL (UC 3, 4, and 7) and half displayed values above the MDL (UC 1, 2, 5 and 6).

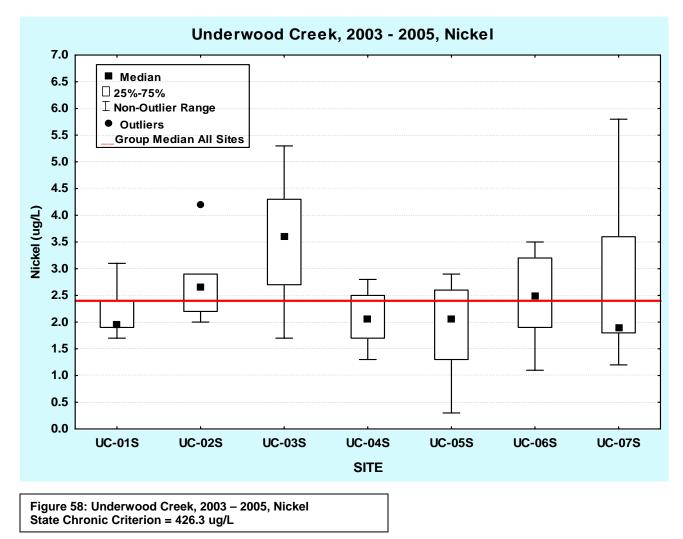
State Chronic Criterion = 288.96 (Cr^{+3}) and 10.98 (Cr^{+6}) $\mu q/L$

The combined data (Figure 56) shows that for all years studied, the lowest medians occurred at UC-03 and UC-07 with UC-03


having the lowest median of all sites. The median value at UC-03 was just slightly lower than the value at UC-07. The highest medians occurred at UC-02, followed by UC-05. UC-06 and UC-01, which were above the overall group median (all years, all sites). UC-03 and UC-07 were below the group median value. All combined data were well below the State Chronic Criterion of 288.96 (Cr⁺³) and 10.98 (Cr⁺⁶) µg/L.

Nickel

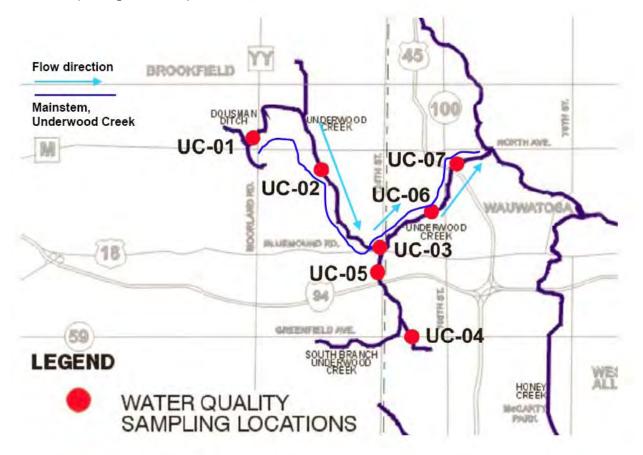
Nickel occurs naturally in the earth's crust, generally combined with other elements. Nickel is primarily utilized to produce alloys. Nickel is a primary component in stainless steel. Other uses include rechargeable batteries; coinage; foundry products; electroplating; catalysts; pigments in ceramics or paints. In general, the list of applications includes buildings and infrastructure,


chemical production, communications, energy supply, food preparation, water treatment and travel (NI 1998). Nickel enters the environment in a number ways; electroplating industries, fossil fuel burning power plants, trash incineration, from the production of alloys or nickel compounds (through the stack), released in wastewater (eco-usa.net 2007) or from vehicle related sources of roadway pollution (break linings, pavement material) (MRBP 2007). Nickel enters the aquatic environment through the weathering of rocks and as a result of human activities, primarily the burning of fossil fuels, street refuse and dust, industrial pollution, atmospheric fallout, and vehicle related sources (MRBP 2007).

The State of Wisconsin Warm Water Chronic Criterion for nickel is 426.3 µg/L. Nickel values for the three-year sampling period on Underwood Creek were 100% below the State Warm Water Chronic Criterion and are presented below (Figure 57).

In general, the year 2005 exhibited the highest median values and the year 2003 had the lowest median values. UC-06 was the only site that experienced a highest median value in a different year (2004). UC-02 was the only site that had a lowest median value in a year other then 2003, this occurred in 2004. All Underwood Creek sites showed an increasing trend most likely due to

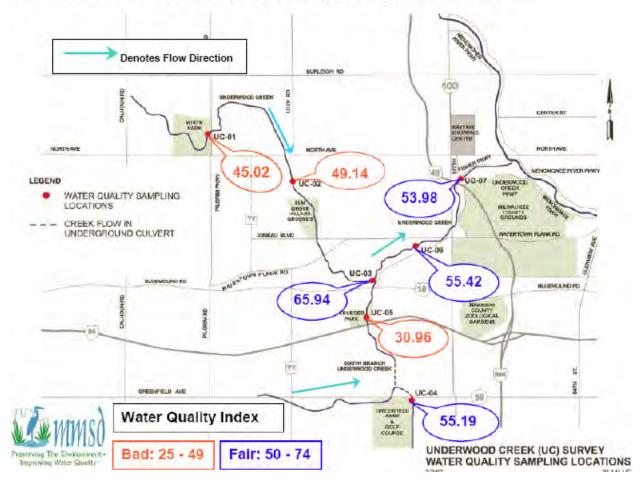
the highest median values seen in 2005. The trendline slope at UC-01 and UC-02 was not as steep as seen at the other Underwood Creek sites.


The combined data (Figure 58) shows that for all years studied, the lowest medians occurred at UC-01, UC-04, UC-05, and UC-07 which all had very similar median values with UC-07 having the lowest median of all sites. The highest median occurred at UC-03, followed by UC-02, and UC-06, which were above the overall group median (all years, all sites). UC-01, UC-04, UC-05, and UC-07 were below the group median value. All combined data were well below the State Chronic Criterion of 426.3 μ g/L.

Summary

Underwood Creek is a small perennial stream that is tributary to the Menomonee River. Much of the creek has been channelized and diverted from its original course. The Underwood Creek subwatershed receives runoff from storms and is subject to flooding, consequently increasing the storm and flood water loading to the Menomonee River.

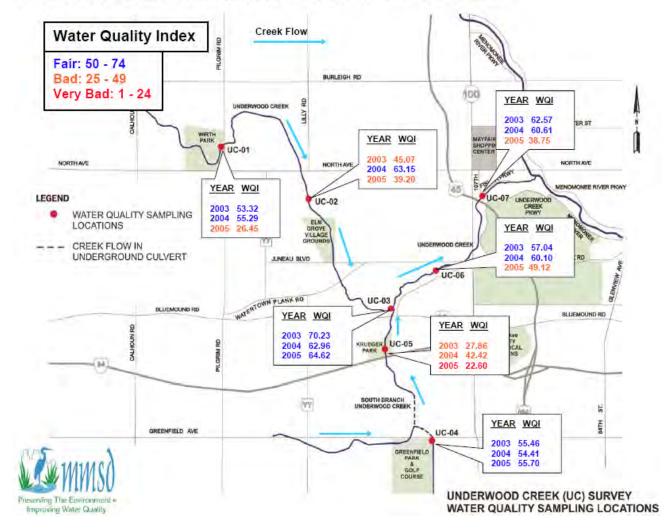
The Milwaukee Metropolitan Sewerage District (MMSD) and other governmental entities are working to reduce the risk of serious damage caused by flooding. The Underwood Creek Rehabilitation Project comprises a portion of a comprehensive approach for flood risk reduction by the MMSD and also seeks to improve habitat and ecological value to the creek.


Monitoring of surface water quality in Underwood Creek began in May of 2003 and encompasses 7 sampling sites; 5 located on the mainstem and 2 located on the south branch of the creek (see figure below).

Samples for several dozen variables are collected and analyzed. In general; some parameters, including dissolved oxygen, suspended solids, un-ionized ammonia, nitrate, nitrite, chloride, mercury, copper, lead, zinc, cadmium, chromium, and nickel were found to be at levels conducive to good water quality. At other times, conventional pollutants, including fecal coliform bacteria, total phosphorus, soluble phosphorus, total kjeldahl nitrogen, and to a lesser extent, dissolved oxygen were at levels indicating poor water quality. Toxic pollutants (PAH's, mercury)

were present in Underwood Creek. PAH's and mercury were present at all sites in all years at low levels.

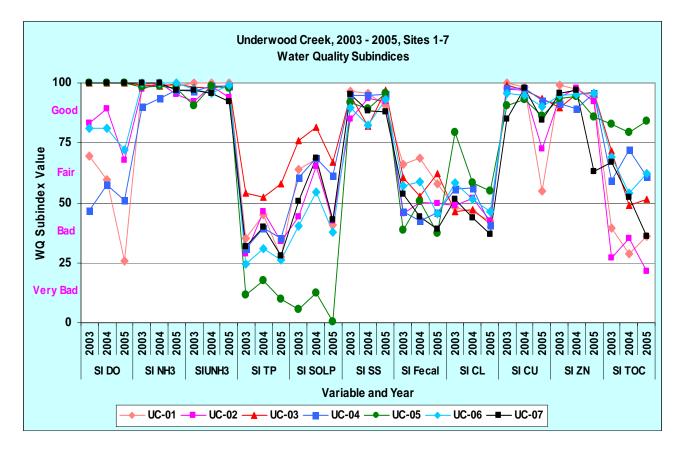
A Water Quality Index (WQI) was developed by MMSD's Water Quality Research Department that is utilized as an assessment tool when evaluating river and creek water quality. The WQI is based on nationally recognized indices and established water quality criteria. Water quality variables are mathematically translated into descriptive categories, i.e. numeric categories; <1, 1-24, 25-49, 50-74, 75-99, >99 are translated to worst, very bad, bad, fair, good, and excellent respectively. Note that as water quality improves, the WQI number increases. The WQI was used to evaluate the Underwood Creek water quality database. The three-year averaged values are presented below along with associated Underwood Creek sampling sites.



Underwood Creek: Three year average WQI Values (2003-2005) Underwood Creek

The WQI regularly classified Underwood Creek as either "fair" or "bad" water quality. UC-03 was ranked as the best overall site with a 3-year average WQI of 65.94. UC-05 was rated as the worst overall site with a 3-year average WQI of 30.96. The water quality of UC-05 was also found to be statistically different from all other Underwood Creek sites (based on final index values). This is most likely due to land usage and drainage in the area surrounding UC-05.

One year annual WQI averages also displayed a similar result (see chart below). UC-03 had the highest annual average of all locations in the year 2003 with a WQI of 70.23. UC-05 had the lowest annual average of all locations in the year 2005 with a WQI of 22.60 indicating "very bad"


water quality. The year 2004 was the best year on average with 6 of the 7 sites exhibiting WQI values in the "fair" category; UC-05 was the only site that never achieved a "fair" water quality rating. The year 2005 was the worst year on average with 5 of the 7 Underwood Creek sites experiencing degradation in water quality; 4 locations dropped to "bad" from "fair" water quality and 1 site dropped to "very bad" from "bad" water quality. UC-04 had the most consistent WQI ratings of all sites and did experience a slight improvement in 2005 from the previous year. In general terms and based on annual WQI averages, water quality improves in the upper reaches of Underwood Creek as it heads downstream; water quality degrades when moving downstream in the South Branch; and improves slightly in the lower mainstem when moving downstream. It appears that UC-05 is exhibiting a strong degrading influence on the sites located downstream (UC-06 and UC-07).

Underwood Creek: Annual Average WQI Values (2003-2005) Underwood Creek

In general and for all locations, total phosphorus (TP), soluble phosphorus (SOLP), fecal coliform bacteria (FC), chloride (CL), and to a lesser extent, total organic carbon (TOC) pull the final WQI value downward toward poorer water quality (see chart below). Total phosphorus and soluble phosphorus were the two most important variables contributing to the bad water quality at UC-05 and most definitely influenced its' "bad" and "very bad" WQI ranking. Conversely and in general for all locations; the subindices (SI) for ammonia (NH3), un-ionized ammonia (UNH3),

suspended solids (SS), copper (CU) and zinc(ZN) were consistently ranked as "good". UC-03 displayed the highest total and soluble phosphorus subindex rankings of all Underwood Creek sites and this played an important role in its recurrently better water quality. Dissolved oxygen (DO) was generally rated as "good" or "fair" and on the few occasions when it received a "bad" ranking, it almost certainly had a negative effect on the final WQI value.

All of the subindices displayed consistency in regard to their yearly rankings and never fluctuated out of a subindex category more than once. Ammonia, un-ionized ammonia, suspended solids, copper, and zinc were generally more stable than dissolved oxygen, total phosphorus, soluble phosphorus, fecal coliform bacteria, and total organic carbon (on a site-by-site basis).

The impact of precipitation on the water quality of Underwood Creek was also examined utilizing a linear correlation. The following statistically valid correlations were found:

- Negative Correlation (negatively impacted by rainfall; as rainfall increases, the WQI deteriorates):
 - Suspended Solids
 - Fecal Coliform Bacteria
 - o Copper
 - o Zinc
- Positive Correlation (as rainfall increases, the WQI improves):
 - \circ Chlorides

All correlation results are presented in the table below.

	MD pair	Spearman Rank Order Correlations MD pairwise deleted Marked correlations are significant at p <.05000								
	Valid	Spearman	t(N-2)	p-level						
Pair of Variables	Ν	R								
SIDO & 3 day precip (ws1219)	168	-0.026203	-0.33772	0.736002						
SITNH3 & 3 day precip (ws1219)	168	-0.027904	-0.35965	0.719564						
SIUNNH3 & 3 day precip (ws1219)	168	0.005095	0.06565	0.947736	WS = rain gauge station SI = Subindex					
SITP & 3 day precip (ws1219)	168	-0.110387	-1.43098	0.154317	SI = Subindex					
SISOLP & 3 day precip (ws1219)	168	-0.075164	-0.97117	0.332876	Appendix D contains a					
SISS & 3 day precip (ws1219)	168	-0.156139	-2.03669	0.043270	variable abbreviations list					
SILGFEC & 3 day precip (ws1219)	168	-0.481508	-7.07840	0.000000						
SICHLOR & 3 day precip (ws1219)	168	0.305971	4.14075	0.000055						
SICU & 3 day precip (ws1219)	168	-0.331177	-4.52210	0.000012						
SIZN & 3 day precip (ws1219)	168	-0.344994	-4.73568	0.000005						
SITOC & 3 day precip (ws1219)	168	0.044917	0.57930	0.563174						
FNLNDX & 3 day precip (ws1219)	166	-0.081049	-1.04136	0.299239						

Water quality variables were also examined as to their compliance with various water quality standards, criteria, or recommended maxima. The following table summarizes this analysis which was based on three years of combined data.

Water Quality Variable	Mostly met or exceeded	Mostly failed to meet	Best UC Site(s)	Worst UC Site(s)
Dissolved Oxygen			UC-06	UC-04
Fecal Coliform Bacteria (Log)		√	UC-01	UC-05
Suspended Solids	√		UC-03	UC-06
Total Phosphorus		√	UC-03	UC-05
Soluble Phosphorus		√	UC-03	UC-05
Un-ionized Ammonia	√		UC-01	UC-04
Total Kjeldahl Nitrogen		√	UC-03	UC-06
Nitrate	√		UC-01	UC-05
Nitrite	√		UC-03	UC-05
Specific Conductance	Not av	/ailable	UC-05	UC-05
Chloride	√		UC-05	UC-03
Polycyclic Aromatic Hydrocarbons	Not av	ailable	UC-02	UC-05
Mercury	\checkmark		UC 1,3,4,7	UC 2, <mark>5</mark> ,6
Copper	√		UC-01	UC-05
Lead	√		UC 1,3,4,5,6,7	UC-02
Zinc			UC-01	UC-05
Cadmium	√		All medians equal	
Chromium	√		UC 3, 7	UC-02
Nickel	\checkmark		UC-07	UC-03

(NOTE: multiple sites listed only if median values were virtually the same or equal)

Of the 17 variables with existing water quality guidelines or regulations (standards, criteria, recommended maxima) only 4 failed to meet the criteria most of the time; these were fecal coliform bacteria, total phosphorus, soluble phosphorus, and total kjeldahl nitrogen. Thirteen variables mostly met or exceeded water quality criteria. The worst site was UC-05 based on its

median values for the variables examined and the best site was UC-03, this is in agreement with the analysis performed utilizing the MMSD Water Quality Index.

The Underwood Creek Rehabilitation and County Grounds Flood Management Project not only creates a floodwater storage facility that will help to reduce the risk of flooding conditions in the Menomonee River (downstream of the Underwood Creek confluence) but also rehabilitates a portion of Underwood Creek. This work is being done in an environmentally friendly manner and will provide improvements to aquatic habitat and public safety. It is anticipated that this project will ultimately improve the water quality of Underwood Creek and potentially the Menomonee River.

Underwood Creek, bioengineered channel.

References

- 1. American Fisheries Society. 1979. Water Quality Section. A Review of the EPA Red Book: Quality Criteria for Water.
- AWMFH (Agricultural Waste Management Field Handbook). 1992. Part 651. Chapter 3. Agricultural Wastes and Water, Air, and Animal Resources. http://www.abe.iastate.edu/Ae573ast 475/AWMFH/Ch3.pdf
- 3. The Business Journal. December 6, 2002. Elm Grove Wants to Revive Downtown, Flood Control Project Expands to Broader Plan.
- 4. CCME (Canadian Council of Ministers). June 2002. www.ccme.ca/sourcetotap/cadmium.html
- 5. City of Brookfield. Spring 2004. City of Brookfield Newsletter. Public Works Department, Storm Water Drainage Improvements.
- 6. Ecological Services of Milwaukee, Inc. May 2006. Site Plan for Underwood Creek Wetland Mitigation Project, Milwaukee County.
- 7. Eco-USA.net. 2007. http://www.eco-usa.net/toxics/nickel.shtml.
- 8. Elm Grove Flood Control Committee. Newsletter.
- GLU (Great Lakes United), 2007. Benefits of Wetlands. Information compiled from the United States Environmental Protection Agency, and Office of Water. AGM 2007. www.glu.org/english/habitat_biodiversity/aquatic/benefits_wetland.htm
- 10. HNTB. 2005. Environmental Analysis and Decision on the Need for an Environmental Impact Statement: Milwaukee County Grounds Floodwater Management Facility / Underwood Creek Rehabilitation Project.
- HNTB. May 2006. Final Environmental Assessment. Milwaukee County Grounds Floodwater Management Facility and Underwood Creek Rehabilitation Projects. MMSD Contract No. W20004DO1. Prepared for Wisconsin Department Natural Resources and Milwaukee Metropolitan Sewerage District.
- 12. Iowa. State of. 2003. Ambient Aquatic Life Criteria for Chlorides. www.state.ia.us/epd/wtresrce/wquality/files/cissue.pdf.
- Lau. D.H., Magruder, C. 2005. Watercourse Planning: The First Step for Implementation of Flood Management Solutions in the Menomonee River Watershed. Camp Dresser & McKee, Milwaukee Metropolitan Sewerage District. 2005 ASFPM Conference Program. June 2005.
- 14. Masterson, J.P. and Bannerman, R.T. 1994. Impacts of Stormwater Runoff on Urban Streams in Milwaukee County, Wisconsin.
- Mebane, C.A. 2006. Cadmium Risks to Freshwater Life: Derivation and Validation of Low-Effect Criteria Values using Laboratory and Field Studies (version 1.1): U.S. Geological Survey Scientific Investigations Report 2006-5245, 130 p.
- 16. MMSD. WQI 03-009-1. Water Quality Initiative, Menomonee River Watershed.
- 17. MMSD. 1994. Development of a Water Quality Index for the Milwaukee Metropolitan Sewerage District.
- 18. MMSD. 2000. Menomonee River. Phase I Watercourse System Management Plan. August 2000.
- 19. MMSD. 2003. Milwaukee Metropolitan Sewerage District Water Quality Monitoring Data Summary Statistics.
- 20. MMSD. 2004. Menomonee River Watershed. State of the Watershed. Winter 2004.
- 21. MMSD. 2004. Lincoln Creek, Water Quality Baseline and Interim Monitoring Report, 1997 2001. Water Quality Research Department. October 2004.
- 22. MMSD. <u>www.mmsd.com/floodmanagement/greenseams_mrw_underwood.cfm</u>. Greenseams, Brookfield Underwood Creek Easement, Brookfield Knull Easement.
- 23. MMSD. Accessed June 16, 2006. www.mmsd.com/floodmanagement/menomonee_river_watershed_county_grounds.cfm

- 24. MMSD. 2005. Fowler, Dave (MMSD), Thomas Sear (Tetra Tech) and Paul M. Boersma (HTNB). Underwood Creek Rehabilitation and Flood Management, Menomonee River Watercourse, Milwaukee, Wisconsin.
- 25. MMSD. 2006. Chapman, Tom. Milwaukee County Grounds and Underwood Creek Flood Management Project. MMSD Connections (newsletter). June 2006.
- MMSD. January 2006. Jeopardy Assessment for the Proposed Incidental Taking Authorization of the Butler's Garter snake. Milwaukee Metropolitan Sewerage District. Milwaukee County Grounds and Underwood Creek Floodwater Management Project. City of Wauwatosa, Milwaukee County, Wisconsin. January 30, 2006. SEWRPC. 1995. Memorandum Report No. 93. A Regional Water Quality Management Plan for Southeastern Wisconsin: An Update and Status Report. March 1995. 782 pp.
- 27. MRBP (Milwaukee River Basin Partnership). May 2007. Pollution Problems. http://basineducation.uwex.edu/milwaukee/pollute.html
- 28. NI (Nickel Institute) 1998. Nickel, Nickel Everywhere. Nickel Institute Reprint Series No. 14048. Reprinted from Materials World, September 1998.
- 29. NPS (National Park Service). 1997. Environmental Contaminants Encyclopedia, Chromium VI (Hexavalent Chromium) Entry. Roy J. Irwin, compiler/editor. NPS, Water Resources Divisions, Water Operations Branch.
- 30. OSHA (Occupational Safety and Health Administration). 2006. U.S. Department of Labor. OSHA Fact Sheet, Health Effect of Hexavalent Chromium. DSG 7/2006.
- 31. Sabre. Rachel (Gall), and Bunk, Heidi. April 2006. Water Quality in Milwaukee County Lakes. WI DNR.
- 32. SEWRPC. March 1995. A Regional Water Quality Management Plan for Southeastern Wisconsin: An Update and Status Report. Memorandum Report No. 93.
- 33. SEWRPC. 2000. Kenosha-Racine-Milwaukee Corridor Transit Study Under Way. Newsletter, Vol. 40, No. 1.
- 34. SEWRPC. Feb. 2000. A Stormwater and Floodland Management Plan for the Dousman Ditch and Underwood Creek Subwatersheds in the City of Brookfield and the Village of Elm Grove. Community Assistance Planning Report No. 236.
- 35. SEWRPC. Nov. 2000. Analysis of Alternative Plans for Removal of the Concrete Lining in Underwood Creek in the City of Wauwatosa. Memorandum Report No. 141.
- 36. SEWRPC. 2003. Analysis of Effects of Proposed Milwaukee County Grounds Detention Basins on Flooding Conditions Along the Menomonee River and Underwood Creek.
- 37. SEWRPC. 2004. Characterization of the Rain Storms of May 2004. Newsletter Vol.42, No.1, 2004.
- 38. SEWRPC. 2008. A Regional Water Quality Management Plan Update for the Greater Milwaukee Watersheds. March 2008.
- 39. The Conservation Fund. October 2006. Jena Thompson. News Release: Greenseams Program Unites Unlikely Coastal Allies, An Innovative Partnership between the Milwaukee Metropolitan Sewerage District and The Conservation Fund Combats Flooding, Safeguards Water Quality, and Preserves Open Space.
- 40. USEPA. December 1999. 1999 Update of Ambient Water Quality Criteria for Ammonia. EPA-822-R-99-014.
- 41. USEPA. December 2000. Ambient Water Quality Criteria Recommendations. Information Supporting the Development of State and Tribal Nutrient Criteria. Rivers and Streams in Nutrient Ecoregion VII. EPA 822-B-00-018.
- 42. USEPA. 2002. Stormwater Effects Handbook. A Toolbox for Watershed Managers, Scientists, and Engineers. G. Allen Burton Jr. and Robert Pitt. Appendix G, Water Quality Criteria. http://www.epa.gov/ednnrmrl/publications/books/handbook/index.htm.
- 43. USEPA. 2007. Aquatic Life Ambient Freshwater Quality Criteria Copper. EPA-822-R-07-001. February 2007.

- 44. USGS. 1998. Getting the Lead Out Positive Effects of the Clean Air Act. http://www.nwrc.usgs.gov/world/content/water3.html
- 45. USGS. 1998. National Wetlands Research Center. Making a Difference to Water. Getting the Lead Out- Positive Effects of the Clean Air Act. <u>http://nwrc.usgs.gov/world/content/water3.html</u>
- USGS. 1999. Waschbusch, R.J., Selbig, W.R., and Bannerman, R.T. Sources of Phosphorus in Stormwater and Street Dirt from Two Urban Residential Basins in Madison, Wisconsin, 1994-05. Water-Resources Investigations Report 99-4021.
- 47. USGS. 2000. Mercury in the Environment. Fact Sheet. 146-00.
- 48. USGS. 2006. Water Science for Schools: Water Measurements, Specific Conductance. http://ga.water.usgs.gov/edu/characteristics.html#Conductance. Page Contact Information:
- 49. USGS. 2007 (last update 4/23/07). General Information on Hardness. City of Boulder/USGS Water Quality Monitoring. Sheila Murphy, BASIN Project. http://bcn.boulder.co.us/basin/data/NUTRIENTS/info/Hard.html
- USGS. 2007. Water-Quality Characteristics for Selected Sites within the Milwaukee Metropolitan Sewerage District Planning Area, Wisconsin, February 2004 – September 2005. Scientific Investigations Report 2007-5084.
- 51. Howard Perlman. Page Last Modified: Monday, 28-Aug-2006 14:56:21 EDT.
- 52. WDHFS (Wisconsin Department of Health and Family Services). 2000. Information on Toxic Chemicals. Chromium. POH 4593 Revised 12/2000. <u>http://dhfs.wisconsin.gov/eh</u>.
- 53. WDNR. 1998. Water Quality Standards for Wisconsin Surface Waters. Wisconsin Administrative Code Chapter NR 102.
- 54. WDNR. 2000. Surface Water Quality Criteria and Secondary Values for Toxic Substances. Wisconsin Administrative Code Chapter NR 105.
- 55. WDNR. 2001. The State of the Milwaukee River Basin. August 2001. PUBL WT 704-2001.
- 56. WDNR. August 2004. http://www.dnr.state.wi.us/org/land/er/factsheets/herps/btgrsn.htm (photo)
- 57. WDNR. August 2004. <u>http://www.dnr.state.wi.us/org/land/er/herps/snakes/butlersgrt.htm</u> (distribution map)
- 58. WDNR. Feb. 2004. Chapter NR 104. Uses and Designated Standards. NR 104.06 Variances and additions applicable in the southeast district.
- 59. WDNR. 2008. Unpublished Data. Report prepared for Milwaukee County. Data provided to MMSD in 2008.
- 60. UWEX and WDNR Nonpoint Source Program. 1995. Urban Runoff. How Polluted Is It? Carolyn D. Johnson. UWEX Southeast Area Urban Water Quality Educator.

APPENDIX A

UNDERWOOD CREEK Number of Samples Generated by Variable per Survey

Test Description	UC Creek (7 Sites)
Depth	7
Temperature	7
Dissolved Oxygen	7
pH	7
Specific Conductance	7
Total Kjeldahl Nitrogen	7
Ammonia-Nitrogen	7
Nitrate-Nitrogen	7
Nitrite-Nitrogen	7
Total Phosphorus	7
Dissolved Phosphorus	7
Total Organic Carbon	7
Total Inorganic Carbon	7
Dissolved Organic Carbon	7
Biochemical Oxygen Demand – 5 Day	7
Biochemical Oxygen Demand – 20 Day	7
Total Alkalinity	7
Hardness (Calculated from Calcium and Magnesium)	7
Total Solids	7
Total Suspended Solids	7
Volatile Suspended Solids	7
Dissolved Solids	7
Turbidity	7
Chlorides	7
Fecal Coliform Bacteria	7
Chlorophyll a	7
Copper*	7
Lead*	7
Chromium*	7
Zinc*	7
Cadmium*	7
Calcium*	7
Magnesium*	7
Arsenic*	7
Mercury*	7
Nickel*	7
Selenium*	7
Silver*	7
PAH's*	7

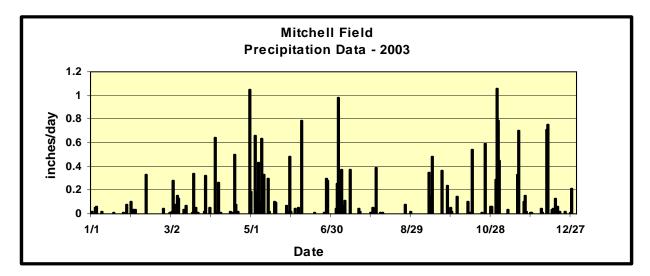
*Sampled 2 times/year (wet event and dry event)

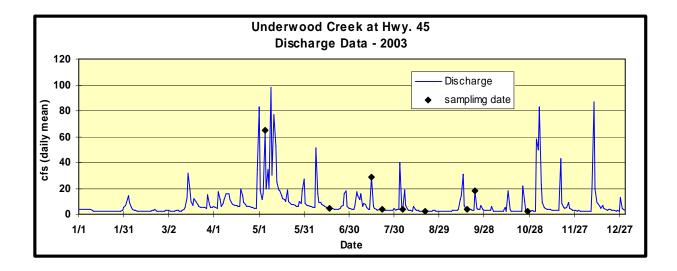
APPENDIX B

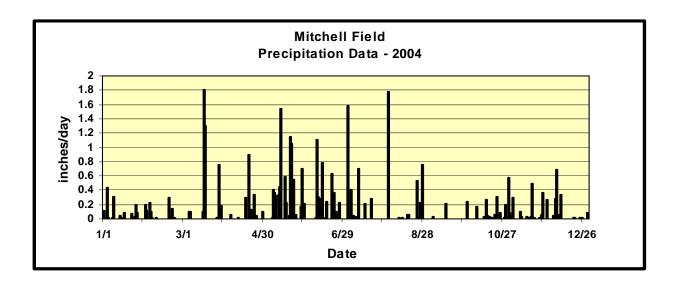
2003 – 2005 UNDERWOOD CREEK: HYDROLAB® DATA

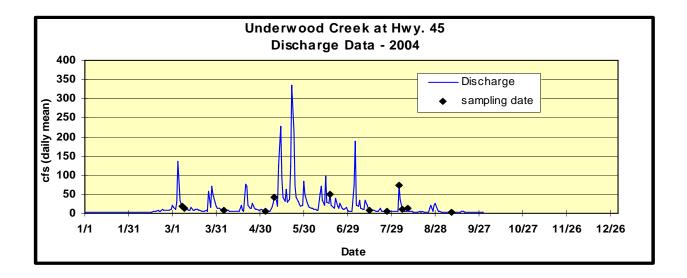
DATE	TIME	SITE	Depth	Temp.	D.O.	рН	S. Cond.
5/5/03	11:04	UC-01S	0.2	9.79	7.51	7.31	1660
6/17/03	11:18	UC-01S	0.1	17.17	8.28	7.15	1484
7/22/03	11:37	UC-01S	0.1	17.41	8.38	7.09	1430
8/5/03	10:30	UC-01S	0.1	17.34	4.72	7.14	1055
8/20/03	10:24	UC-01S	0.1	17.23	3.7	7	1199
9/17/03	10:46	UC-01S	0.1	15.48	3.61	6.89	1537
9/22/03	9:49	UC-01S	0.1	15.34	3.46	6.92	1414
10/27/03	11:12	UC-01S	0.1	8.27	6.7	6.7	1456
4/5/04	10:27	UC-01S	0.4	5.81	11.08	7.26	1949
5/4/04	10:54	UC-01S	0.3	11.73	10.7	7.3	1641
6/17/04	10:02	UC-01S	0.5	19.07	4.88	7.08	899
7/14/04	12:01	UC-01S	0.2	19.88	6.53	7.17	1392
8/3/04	11:09	UC-01S	0.1	17.58	2.79	6.86	1509
9/8/04	10:39	UC-01S	0.2	14.58	2.56	6.97	1541
10/27/04	10:25	UC-01S	0.3	11.5	2.19	6.62	1875
11/2/04	10:53	UC-01S	0.3	9.37	5.22	6.71	709
4/19/05	10:59	UC-01S	0.3	14.31	7.86	7.18	2053
5/18/05	10:48	UC-01S	0.4	13.24	6.69	7.09	1492
6/14/05	11:59	UC-01S	0.2	22.34	1.23	6.99	1886
7/12/05	11:06	UC-01S	0.2	17.75	1.23	6.83	1782
8/11/05	10:36	UC-01S	0.3	19.48	0.79	6.84	1495
9/13/05	11:06	UC-01S	0.1	19.63	0.13	6.71	1481
10/11/05	11:51	UC-01S	0.2	11.59	1.29	6.57	1435
11/14/05	10:17	UC-01S	0.3	6.55	1.41	6.44	1086
5/5/03	10:51	UC-02S	0.2	9.55	9.31	7.66	1362
6/17/03	11:06	UC-02S	0.2	15.78	6.97	7.79	1381
7/22/03	11:25	UC-02S	0.1	18.77	5.13	7.75	1371
8/5/03	10:19	UC-02S	0.1	18.81	5.74	7.9	1391
8/20/03	10:09	UC-02S	0.1	20.95	1.32	7.51	1303
9/17/03	10:26	UC-02S	0.1	15.72	6.87	7.63	1504
9/22/03	9:33	UC-02S	0.1	15.71	6.36	7.67	869
10/27/03	11:00	UC-02S	0.1	6.8	9.66	7.16	1370
4/5/04	10:14	UC-02S	0.2	4.23	13.05	7.81	1791
5/4/04	10:43	UC-02S	0.2	10.52	13.03	8.07	1583
6/17/04	9:54	UC-02S	0.5	18.4	7.6	7.61	954
7/14/04	11:16	UC-02S	0.2	19.47	7.53	7.86	1297
8/3/04	10:50	UC-02S	0.2	20.79	6.88	7.84	1463
9/8/04	10:23	UC-02S	0.4	16.99	5.46	7.87	1474
10/27/04	10:14	UC-02S	0.4	11.17	3.45	6.98	1564
11/2/04	10:36	UC-02S	0.4	9.14	8.75	7.17	518
4/19/05	10:30	UC-02S	0.3	14.3	13.26	8.05	1884
5/18/05	10:32	UC-02S	0.4	13.13	9.1	7.71	1477
6/14/05	11:41	UC-02S	0.3	22.05	4.31	7.41	1375

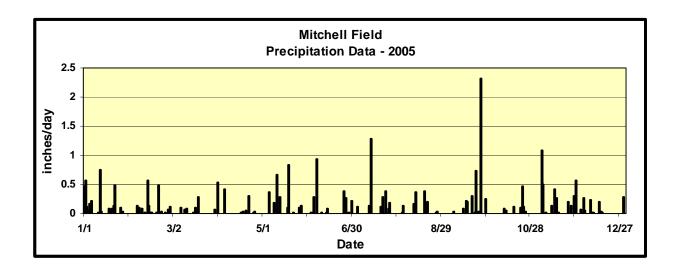
DATE	TIME	SITE	Depth	Temp.	D.O.	рН	S. Cond.
7/12/05	10:47	UC-02S	0.3	20.22	3.06	7.44	1705
8/11/05	10:47	UC-02S	0.2	21.29	1.81	7.44	1613
9/13/05	10:48	UC-02S	0.1	21.20			1010
10/11/05	11:41	UC-02S	0.3	10.55	6.36	7.26	1476
11/14/05	10:07	UC-02S	0.0	4.65	9.56	7.11	1356
5/5/03	10:36	UC-03S	0.4	9.43	9.49	7.76	973
6/17/03	10:45	UC-03S	0.1	15.64	8.57	7.76	1525
7/22/03	11:12	UC-03S	0.1	14.88	9.27	7.3	1880
8/5/03	10:09	UC-03S	0.1	17.93	8.91	7.51	1784
8/20/03	9:51	UC-03S	0.1	15.64	11.56	7.48	2179
9/17/03	10:13	UC-03S	0.1	15.45	10.76	7.51	1998
9/22/03	9:16	UC-03S	0.1	15.29	7.39	7.17	1153
10/27/03	10:49	UC-03S	0.1	10.46	12	7.16	1496
4/5/04	9:55	UC-03S	0.1	4.48	14.41	8.02	1490
5/4/04	10:31	UC-03S	0.2	10.22	13.76	8.12	1698
	9:34	UC-03S	0.1	18.14	11.53	7.39	281
6/17/04 7/14/04	9.34	UC-03S	0.2	10.14	7.2	7.63	1521
8/3/04	10:34	UC-03S	0.1	18.62	10	7.03	1890
9/8/04	10:34	UC-03S	0.1	14.92	10.95	7.41	2292
10/27/04	10:12	UC-03S	0.2	12.23	8.28	7.45	1783
11/2/04		UC-03S	0.2	9.23	9.45	7.01	1763
	10:18						
4/19/05	10:16	UC-03S	0.2	14.31	12.65	8.03	1958
5/18/05	10:18	UC-03S	0.2	12.78	11.97	7.87	1700 1721
6/14/05	11:28	UC-03S	0.1	19.96	7.77	7.54	
7/12/05	10:30	UC-03S	0.2	13.51	8.98	7.07	1921
8/11/05	10:10	UC-03S	0.2	13.99	9.18	7.29	2110
9/13/05	10:35	UC-03S	0.1	16	8.48	6.9	2111
10/11/05	11:21	UC-03S	0.2	14.38 7.01	11.25	7.32	2256
11/14/05	9:53	UC-03S UC-04S	0.3		10.03	7.17	1524
5/5/03	10:09			10	8.52	7.39	662
6/17/03	10:15	UC-04S	0.1	15.1	2.64	7.27	1942
7/22/03	10:50	UC-04S	0.1	19.31	2.33	7.19	1398
8/5/03	9:51	UC-04S	0.1	19.39	2.61	7.36	1150
8/20/03	9:30	UC-04S	0.1	21.5	1.5	7.21	1545
9/17/03	9:53	UC-04S	0.1	16.59	5 00	7.24	1273
9/22/03	8:54	UC-04S	0.1	17.15	5.99	7.05	369
10/27/03	10:29	UC-04S	0.1	7.45	7.47	6.95	1887
4/5/04	9:34	UC-04S	0.3	3.28	8.56	7.46	2133
5/4/04	10:11	UC-04S	0.1	9.7	7.32	7.54	1645
6/17/04	9:22	UC-04S	0.3	19.62	6.65	7.21	410
7/14/04	10:24	UC-04S	0.1	19.04	3.57	7.3	1279
8/3/04	10:11	UC-04S	0.2	20.52	1.6	7.11	1661
9/8/04	9:45	UC-04S	0.3	18.16	2.33	7.3	1985
10/27/04	9:44	UC-04S	0.4	13.49	2.87	6.84	772
11/2/04	9:58	UC-04S	0.4	10.57	6.87	6.87	452
4/19/05	9:56	UC-04S	0.2	11.93	7.57	7.5	1979
5/18/05	10:00	UC-04S	0.2	12.84	5.83	7.44	1887

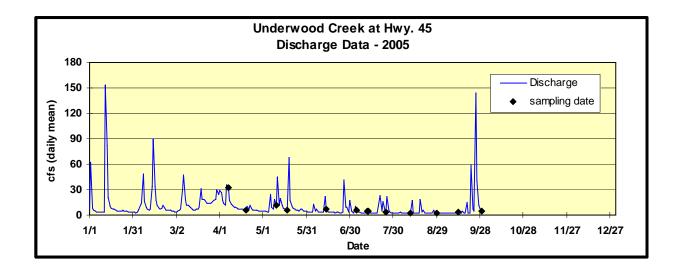

DATE	TIME	SITE	Depth	Temp.	D.O.	pН	S. Cond.
6/14/05	11:08	UC-04S	0.1	21.1	3.61	7.22	1233
7/12/05	9:55	UC-04S	0.3	20.56	2.58	7.24	1961
8/11/05	9:48	UC-04S	0.2	22.12	2.19	7.31	1537
9/13/05	10:16	UC-04S	0.2	21.64	3.28	7.22	1420
10/11/05	10:57	UC-04S	0.3	12.45	5.83	7.13	2274
11/14/05	9:34	UC-04S	0.3	6.74	4.09	6.77	1572
5/5/03	10:26	UC-05S	0.1	9.81	9.87	8.43	1153
6/17/03	10:36	UC-05S	0.1	14.69	9.85	7.91	848
7/22/03	11:01	UC-05S	0.1	18.24	9.77	7.73	951
8/5/03	10:00	UC-05S	0.1	17.86	9.08	8.01	627
8/20/03	9:41	UC-05S	0.1	19.64	8.68	7.76	731
9/17/03	10:03	UC-05S	0.1	16.01	9.42	7.69	650
9/22/03	9:09	UC-05S	0.1	16.3	8.51	7.5	283
10/27/03	10:40	UC-05S	0.1	10.64	12.27	7.52	817
4/5/04	9:46	UC-05S	0.3	6.85	12.62	7.68	2020
5/4/04	10:23	UC-05S	0.3	11.36	14.8	7.7	2015
6/17/04	9:32	UC-05S	0.3	18.69	8.07	7.49	509
7/14/04	10:52	UC-05S	0.1	18.06	10.58	7.68	1262
8/3/04	10:24	UC-05S	0.1	18.6	8.85	7.7	821
9/8/04	9:57	UC-05S	0.3	17.02	9.46	7.66	1440
10/27/04	9:53	UC-05S	0.3	13.89	7.03	7.18	798
11/2/04	10:10	UC-05S	0.2	11.33	9.66	7.24	628
4/19/05	10:07	UC-05S	0.2	11.85	17.01	7.94	1811
5/18/05	10:10	UC-05S	0.2	11.76	13.53	7.87	1414
6/14/05	11:19	UC-05S	0.1	18.1	9.3	7.54	928
7/12/05	10:08	UC-05S	0.3	17.32	8.28	7.48	1265
8/11/05	9:59	UC-05S	0.3	19.1	7.86	7.61	904
9/13/05	10:27	UC-05S	0.2	18.94	8.96	7.58	1047
10/11/05	11:12	UC-05S	0.3	13.66	12.72	7.45	1434
11/14/05	9:44	UC-05S	0.3	9.82	10.28	7.12	1263
5/5/03	11:20	UC-06S	0.1	9.94	10.67	8.07	1061
6/17/03	11:46	UC-06S	0.1	22.77	26.57	8.69	1400
7/22/03	11:59	UC-06S	0.1	21.14	23.27	8.53	1366
8/5/03	10:45	UC-06S	0.1	21.32	14.53	8.33	1262
8/20/03	10:48	UC-06S	0.1	23.46	19.92	8.61	1237
9/17/03	11:01	UC-06S	0.1	18.46	15.77	8.12	1194
9/22/03	10:07	UC-06S	0.1	16.73	9.82	7.69	487
10/27/03	11:29	UC-06S	0.1	11.13	21.92	8.42	1219
4/5/04	10:44	UC-06S	0.2	7.51	20.65	8.23	1933
5/4/04	11:16	UC-06S	0.1	14.49	23.58	8.58	1826
5/6/04	11:20	UC-06S					
6/17/04	10:28	UC-06S	0.2	19	8.62	7.63	660
7/14/04	12:18	UC-06S	0.1	23.1	14.21	8.11	1503
8/3/04	11:42	UC-06S	0.2	24.07	25.7	8.43	1533
9/8/04	10:54	UC-06S	0.2	18.46	12.75	8.51	1579
10/27/04	10:48	UC-06S	0.2	12.32	10.59	7.35	1285
11/2/04	11:08	UC-06S	0.2	10.41	11.07	7.41	870

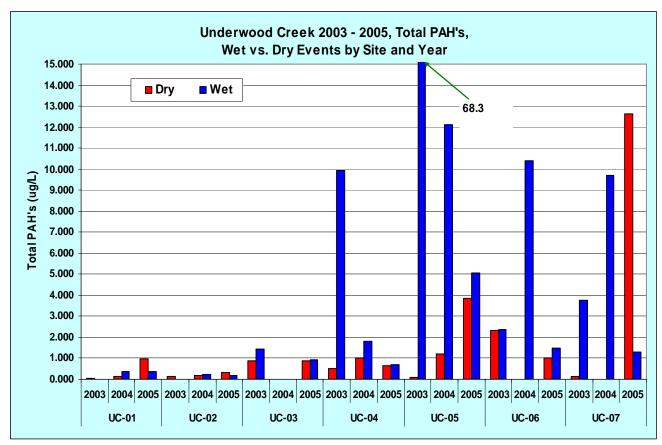

DATE	TIME	SITE	Depth	Temp.	D.O.	рΗ	S. Cond.
4/19/05	11:18	UC-06S	0.2	17.59	24.98	8.66	1901
5/18/05	11:04	UC-06S	0.3	15.64	18.84	8.48	1714
6/14/05	12:17	UC-06S	0.1	22.06	9.67	7.78	1539
7/12/05	11:39	UC-06S	0.2	20.48	9.72	7.72	1208
8/11/05	11:11	UC-06S	0.2	20.71	8.75	7.7	1370
9/13/05	11:22	UC-06S	0.1	22.85	17.44	8.18	1462
10/11/05	12:06	UC-06S	0.2	14.25	27.25	8.56	1668
11/14/05	10:32	UC-06S	0.3	8.24	24.08	8.2	1478
5/5/03	11:34	UC-07S	0.1	10.4	10.87	8.22	1097
6/17/03	11:58	UC-07S	0.1	24.54	12.98	8.55	1591
7/22/03	12:10	UC-07S	0.1	23.27	12.35	8.47	1427
8/5/03	11:01	UC-07S	0.1	23.13	10.93	8.62	1358
8/20/03	11:02	UC-07S	0.1	24.31	10.56	8.31	1396
9/17/03	11:12	UC-07S	0.1	19.28	12.43	8.31	1185
9/22/03	10:19	UC-07S	0.1	17.01	9.52	7.99	629
10/27/03	11:38	UC-07S	0.1	10.7	14.77	8.52	1339
4/5/04	10:53	UC-07S	0.2	8.2	15.22	8.52	2141
5/4/04	11:27	UC-07S	0.2	16.23	14.06	8.66	1979
6/17/04	10:38	UC-07S	0.3	19.64	8.91	7.78	652
7/14/04	12:27	UC-07S	0.1	24.8	14.48	8.66	1581
8/3/04	11:55	UC-07S	0.2	25.53	11.73	8.29	1770
9/8/04	11:06	UC-07S	0.2	18.84	13.88	8.25	1815
10/27/04	10:58	UC-07S	0.3	12.18	10.78	7.7	1458
11/2/04	11:23	UC-07S	0.2	10.82	11.4	7.82	890
4/19/05	11:29	UC-07S	0.2	19.46	13.55	8.79	2092
5/18/05	11:16	UC-07S	0.2	15.69	13.64	8.59	2057
6/14/05	12:35	UC-07S	0.1	24.58	10.83	8.12	1807
7/12/05	11:56	UC-07S	0.2	20.72	8.09	7.61	935
8/11/05	11:29	UC-07S	0.2	21.55	8.57	7.92	1448
9/13/05	11:32	UC-07S	0.1	24.34	10.03	8.14	1391
10/11/05	12:15	UC-07S	0.3	14.14	14.22	8.2	2077
11/14/05	10:45	UC-07S	0.3	6.71	15.35	8.03	1741


APPENDIX C


UNDERWOOD CREEK PRECIPITATION DATA and DISCHARGE DATA: 2003 – 2005 (WS 1219 Precipitation, unless noted otherwise)


NOTE: Discharge data is presented with associated water quality sampling date.





Wet Event Data vs. Dry Event Data Underwood Creek 2003 – 2005

(Note: total of 3 wet sample data points and 3 dry sample data points)

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
1/1/03	0.00			2/18/03	0.00		
1/2/03	0.02			2/19/03	0.00		
1/3/03	0.00			2/20/03	0.00		
1/4/03	0.03			2/21/03	0.00		
1/5/03	0.00			2/22/03	0.00		
1/6/03	0.00			2/23/03	0.00		
1/7/03	0.00			2/24/03	0.00		
1/8/03	0.00			2/25/03	0.00		
1/9/03	0.01			2/26/03	0.00		
1/10/03	0.00			2/27/03	0.00		
1/11/03	0.00			2/28/03	0.00	0.19	
1/12/03	0.00			3/1/03	0.00		
1/13/03	0.00			3/2/03	0.01		
1/14/03	0.00			3/3/03	0.03		
1/15/03	0.00			3/4/03	0.19		
1/16/03	0.00			3/5/03	0.00		
1/17/03	0.00			3/6/03	0.00		
1/18/03	0.00			3/7/03	0.11		
1/19/03	0.00			3/8/03	0.13		
1/20/03	0.00			3/9/03	0.00		
1/21/03	0.00			3/10/03	0.00		
1/22/03	0.00			3/11/03	0.00		
1/23/03	0.00			3/12/03	0.03		
1/24/03	0.00			3/13/03	0.03		
1/25/03	0.00			3/14/03	0.00		
1/26/03	0.00			3/15/03	0.00		
1/27/03	0.00			3/16/03	0.00		
1/28/03	0.01			3/17/03	0.00		
1/29/03	0.00			3/18/03	0.01		
1/30/03	0.00			3/19/03	0.21		
1/31/03	0.00	0.07		3/20/03	0.07		
2/1/03	0.00			3/21/03	0.01		
2/2/03	0.01			3/22/03	0.01		
2/3/03	0.02			3/23/03	0.00		
2/4/03	0.00			3/24/03	0.01		
2/5/03	0.00			3/25/03	0.00		
2/6/03	0.00			3/26/03	0.00		
2/7/03	0.00			3/27/03	0.04		
2/8/03	0.00			3/28/03	0.31		
2/9/03	0.00			3/29/03	0.00		
2/10/03	0.00			3/30/03	0.00		
2/11/03	0.16			3/31/03	0.07	1.27	
2/12/03	0.00			4/1/03	0.00		
2/13/03	0.00			4/2/03	0.00		
2/14/03	0.00			4/3/03	0.01		
2/15/03	0.00			4/4/03	0.31		
2/16/03	0.00			4/5/03	0.00		
2/17/03	0.00			4/6/03	0.00		

UNDERWOOD CREEK PRECIPITATION DATA: 2003 – 2005 (WS 1219 Precipitation)

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
4/7/03	0.79			5/29/03	0.00		
4/8/03	0.06			5/30/03	0.58		
4/9/03				5/31/03	0.08	4.39	
4/10/03				6/1/03			
4/11/03				6/2/03	0.00		
4/12/03				6/3/03	0.04		
4/13/03				6/4/03	0.00		
4/14/03				6/5/03	0.00		
4/15/03	0.00			6/6/03	0.02		
4/16/03	0.00			6/7/03	0.00		
4/17/03	0.01			6/8/03	0.95		
4/18/03	0.00			6/9/03	0.00		
4/19/03	0.56			6/10/03	0.00		
4/20/03	0.08			6/11/03	0.00		
4/21/03	0.05			6/12/03	0.00		
4/22/03	0.00			6/13/03	0.00		
4/23/03	0.00			6/14/03	0.00		
4/24/03	0.00			6/15/03	0.00		
4/25/03	0.00			6/16/03	0.00		
4/25/03	0.00			6/17/03	0.00		
4/20/03	0.00			6/18/03	0.00		
4/28/03	0.00			6/19/03	0.01		
4/29/03	0.00	2.04		6/20/03	0.00		
4/30/03	1.07	2.94		6/21/03	0.00		
5/1/03	0.36			6/22/03	0.00		
5/2/03	0.00			6/23/03	0.00		
5/3/03	0.00			6/24/03	0.00		
5/4/03	0.52			6/25/03	0.19		
5/5/03	0.44			6/26/03	0.01		
5/6/03	0.00			6/27/03	0.35		
5/7/03	0.41			6/28/03	0.21		
5/8/03	0.00			6/29/03	0.00	4.05	
5/9/03	0.91			6/30/03	0.00	1.85	
5/10/03	0.04			7/1/03	0.00		
5/11/03	0.73			7/2/03	0.00		
5/12/03	0.00			7/3/03	0.00		
5/13/03	0.00			7/4/03	0.10		
5/14/03	0.08			7/5/03	0.15		
5/15/03	0.01			7/6/03	0.24		
5/16/03				7/7/03	0.03		
5/17/03				7/8/03	0.41		
5/18/03				7/9/03	0.07		
5/19/03				7/10/03	0.03		
5/20/03				7/11/03	0.10		
5/21/03				7/12/03	0.00		
5/22/03				7/13/03	0.00		
5/23/03				7/14/03	0.00		
5/24/03				7/15/03	0.46		
5/25/03				7/16/03	0.00	ļ	
5/26/03				7/17/03	0.00		
5/27/03	0.00			7/18/03	0.00		
5/28/03	0.23			7/19/03	0.00		

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
7/20/03	0.00			9/10/03	0.00		
7/21/03	0.00			9/11/03	0.00		
7/22/03	0.00			9/12/03	0.26		
7/23/03	0.00			9/13/03	0.38		
7/24/03	0.00			9/14/03	0.52		
7/25/03	0.00			9/15/03	0.00		
7/26/03	0.00			9/16/03	0.00		
7/27/03	0.00			9/17/03	0.00		
7/28/03	0.00			9/18/03	0.00		
7/29/03	0.00			9/19/03	0.00		
7/30/03	0.00			9/20/03	0.00		
7/31/03	0.00	1.59		9/21/03	0.00		
8/1/03	0.00	1.00		9/22/03	0.02		
8/2/03	0.00			9/23/03	0.00		
8/3/03	0.00			9/23/03	0.00		
8/4/03	0.00			9/25/03	0.00		
8/5/03	0.00			9/26/03	0.00		
8/6/03	0.00			9/20/03	0.18		
8/7/03	0.00			9/28/03	0.02		
8/8/03	0.00			9/29/03	0.03	1.00	
8/9/03	0.00			9/30/03	0.00	1.82	
8/10/03	0.00			10/1/03	0.00		
8/11/03	0.01			10/2/03	0.00		
8/12/03	0.10			10/3/03	0.18		
8/13/03	0.00			10/4/03	0.00		
8/14/03	0.00			10/5/03	0.00		
8/15/03	0.00			10/6/03	0.00		
8/16/03	0.00			10/7/03	0.00		
8/17/03	0.00			10/8/03	0.00		
8/18/03	0.00			10/9/03	0.00		
8/19/03	0.00			10/10/03	0.00		
8/20/03	0.00			10/11/03	0.16		
8/21/03	0.00			10/12/03	0.00		
8/22/03	0.00			10/13/03	0.01		
8/23/03	0.00			10/14/03	0.58		
8/24/03	0.00			10/15/03	0.00		
8/25/03	0.02			10/16/03	0.00		
8/26/03	0.00			10/17/03	0.00		
8/27/03	0.00			10/18/03	0.00		
8/28/03	0.00			10/19/03	0.00		
8/29/03	0.01			10/20/03	0.00		
8/30/03	0.00			10/21/03	0.00		
8/31/03	0.00	0.56		10/22/03	0.00		
9/1/03	0.00			10/23/03	0.00		
9/2/03	0.00			10/24/03	0.73		
9/3/03	0.00			10/25/03	0.00		
9/4/03	0.00			10/26/03	0.00		
9/5/03	0.00			10/27/03	0.00		
9/6/03	0.00			10/28/03	0.00		
9/7/03	0.00			10/29/03	0.00		
9/8/03	0.00			10/30/03	0.00		
9/9/03	0.00			10/31/03	0.00	1.66	

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
11/1/03	0.00			12/23/03	0.00		
11/2/03	1.46			12/24/03	0.00		
11/3/03	0.94			12/25/03	0.00		
11/4/03	0.48			12/26/03	0.00		
11/5/03	0.00			12/27/03	0.00		
11/6/03	0.00			12/28/03	0.18		
11/7/03	0.00			12/29/03	0.00		
11/8/03	0.00			12/30/03	0.00		
11/9/03	0.00			12/31/03	0.00	1.89	
11/10/03	0.04			1/1/04	0.00		
11/11/03	0.00			1/2/04	0.04		
11/12/03	0.00			1/3/04	0.00		
11/13/03	0.00			1/4/04	0.24		
11/14/03	0.00			1/5/04	0.00		
11/15/03	0.00			1/6/04	0.00		
11/16/03	0.00			1/7/04	0.00		
11/17/03	0.29			1/8/04	0.00		
11/18/03	0.87			1/9/04	0.00		
11/19/03	0.00			1/10/04	0.00		
11/20/03	0.00			1/11/04	0.00		
11/21/03	0.00			1/12/04	0.00		
11/22/03	0.17			1/13/04	0.00		
11/23/03	0.11			1/14/04	0.00		
11/24/03	0.00			1/15/04	0.00		
11/25/03	0.00			1/16/04	0.00		
11/26/03	0.00			1/17/04	0.21		
11/27/03	0.02			1/18/04	0.00		
11/28/03	0.00			1/19/04	0.00		
11/29/03	0.00			1/20/04	0.00		
11/30/03	0.00	4.38		1/21/04	0.00		
12/1/03	0.00			1/22/04	0.00		
12/2/03	0.00			1/23/04	0.14		
12/3/03	0.00			1/24/04	0.00		
12/4/03	0.00			1/25/04	0.01		
12/5/03	0.02			1/26/04	0.16		
12/6/03	0.00			1/27/04	0.01		
12/7/03	0.00			1/28/04	0.00		
12/8/03	0.00			1/29/04	0.00		
12/9/03	0.77			1/30/04	0.00		
12/10/03	0.85			1/31/04	0.00	0.81	
12/11/03	0.00			2/1/04	0.00		
12/12/03	0.00			2/2/04	0.16		
12/13/03	0.00			2/3/04	0.02		
12/14/03	0.01			2/4/04	0.00		
12/15/03	0.00			2/5/04	0.18		
12/16/03	0.06			2/6/04	0.06		
12/17/03	0.00			2/7/04	0.00		
12/18/03	0.00			2/8/04	0.00		
12/19/03	0.00			2/9/04	0.00		
12/20/03	0.00			2/10/04	0.00		
12/21/03	0.00			2/11/04	0.00		
12/22/03	0.00			2/12/04	0.00		

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
2/13/04	0.00			4/5/04	0.00		
2/14/04	0.00			4/6/04	0.04		
2/15/04	0.00			4/7/04	0.00		
2/16/04	0.00			4/8/04	0.00		
2/17/04	0.00			4/9/04	0.00		
2/18/04	0.00			4/10/04	0.00		
2/19/04	0.00			4/11/04	0.00		
2/20/04	0.06			4/12/04	0.00		
2/20/04	0.00			4/13/04	0.00		
2/22/04	0.08			4/14/04	0.00		
2/23/04	0.00			4/15/04	0.00		
2/24/04	0.00			4/16/04	0.00		
2/25/04	0.00			4/17/04	0.33		
2/26/04	0.00			4/18/04	0.02		
2/27/04	0.00			4/19/04	0.02		
2/28/04	0.00			4/20/04	1.51		
2/20/04	0.00	0.48		4/21/04	0.12		
3/1/04	0.14	0.40		4/22/04	0.12		
3/2/04	0.00			4/23/04	0.00		
3/3/04	0.00			4/23/04	0.00		
3/3/04	0.01			4/24/04	0.18		
3/4/04	0.95			4/25/04	0.13		
3/5/04	0.00			4/26/04	0.00		
3/6/04	0.00				0.00		
				4/28/04			
3/8/04	0.00			4/29/04	0.00	0.40	
3/9/04	0.00			4/30/04	0.07	2.40	
3/10/04	0.01			5/1/04	0.00		
3/11/04	0.01			5/2/04	0.00		
3/12/04	0.00			5/3/04	0.00		
3/13/04	0.06			5/4/04	0.00		
3/14/04	0.12			5/5/04			
3/15/04	0.00			5/6/04	0.00		
3/16/04				5/7/04	0.06		
3/17/04	0.12			5/8/04	0.44		
3/18/04	0.12			5/9/04	0.16		
3/19/04	0.01			5/10/04	0.94		
3/20/04	0.00			5/11/04	0.00		
3/21/04	0.00			5/12/04	0.09		
3/22/04	0.00			5/13/04	0.89		
3/23/04	0.00			5/14/04	1.28		
3/24/04	0.09	+		5/15/04	0.00		
3/25/04	0.33	+		5/16/04	0.00		
3/26/04	0.53			5/17/04	0.29		
3/27/04	0.03			5/18/04	0.26		
3/28/04	0.95			5/19/04	0.00		
3/29/04	0.00			5/20/04	0.61		
3/30/04	0.13	4.07		5/21/04	1.11		
3/31/04	0.00	4.27		5/22/04	1.10		
4/1/04	0.00			5/23/04	0.52		
4/2/04	0.00			5/24/04	0.00		
4/3/04	0.00			5/25/04	0.05		
4/4/04	0.00			5/26/04	0.00		

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
5/27/04	0.00	_		7/18/04	0.00		
5/28/04	0.00			7/19/04	0.00		
5/29/04	0.15			7/20/04	0.00		
5/30/04	0.79			7/21/04	0.08		
5/31/04	0.10	8.84		7/22/04	0.00		
6/1/04	0.00	0.0.1		7/23/04	0.00		
6/2/04	0.00			7/24/04	0.00		
6/3/04	0.00			7/25/04	0.00		
6/4/04	0.00			7/26/04	0.00		
6/5/04	0.00			7/27/04	0.00		
6/6/04	0.00			7/28/04	0.00		
6/7/04	0.00			7/29/04	0.00		
6/8/04	0.00			7/30/04	0.00		
6/9/04	0.00			7/31/04	0.00	3.14	
6/10/04	1.10			8/1/04	0.00	0.14	
6/11/04	0.65			8/2/04	0.00		
6/12/04	0.10			8/3/04	1.49		
6/13/04	0.00			8/4/04	0.00		
6/14/04	0.51			8/5/04	0.00		
6/15/04	0.00			8/6/04	0.00		
6/16/04	0.00			8/7/04	0.00		
6/17/04	0.57			8/8/04	0.00		
6/18/04	0.00			8/9/04	0.00		
6/19/04	0.00			8/10/04	0.04		
6/20/04	0.00			8/11/04	0.00		
6/21/04	0.54			8/12/04	0.00		
6/22/04	0.00			8/13/04	0.00		
6/23/04	0.00			8/13/04	0.00		
6/24/04	0.00			8/15/04	0.00		
6/25/04	0.20			8/16/04	0.00		
6/26/04	0.00			8/17/04	0.00		
6/27/04	0.00			8/17/04	0.03		
6/28/04	0.00			8/19/04	0.00		
6/29/04	0.00			8/20/04	0.00		
		1 1 2					
6/30/04 7/1/04	0.00	4.13		8/21/04	0.00		
7/1/04	0.00			8/22/04 8/23/04	0.00		
7/3/04				8/23/04	0.00		
	1.96			8/25/04	0.32		
7/4/04 7/5/04	0.09			8/25/04	0.00		<u> </u>
7/5/04	0.00			8/26/04 8/27/04	0.00		<u> </u>
					0.48		
7/7/04	0.28			8/28/04 8/29/04	0.64		
7/8/04	0.00				0.00		
7/9/04	0.05			8/30/04 8/31/04	0.00	2.10	
7/10/04	0.00				0.00	3.10	
7/11/04	0.52			9/1/04 9/2/04	0.00		
7/12/04	0.00				0.00		
7/13/04	0.00			9/3/04	0.00		
7/14/04	0.00			9/4/04	0.00		
7/15/04	0.00			9/5/04	0.00		
7/16/04	0.03			9/6/04	0.01		
7/17/04	0.00			9/7/04	0.00		

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
9/8/04	0.00			10/30/04	0.28		
9/9/04	0.00			10/31/04	0.00	1.76	
9/10/04	0.00			11/1/04	0.66		
9/11/04	0.00			11/2/04	0.11		
9/12/04	0.00			11/3/04	0.00		
9/13/04	0.00			11/4/04	0.26		
9/14/04	0.00			11/5/04	0.00		
9/15/04	0.25			11/6/04	0.00		
9/16/04	0.00			11/7/04	0.00		
9/17/04	0.00			11/8/04	0.00		
9/18/04	0.00			11/9/04	0.00		
9/19/04	0.00			11/10/04	0.08		
9/20/04	0.00			11/11/04	0.01		
9/21/04	0.00			11/12/04	0.00		
9/22/04	0.00			11/13/04	0.00		
9/23/04	0.00			11/14/04	0.00		
9/24/04	0.00			11/15/04	0.04		
9/25/04	0.00			11/16/04	0.00		
9/26/04	0.00			11/17/04	0.00		
9/27/04	0.00			11/18/04	0.00		
9/28/04	0.00			11/19/04	0.66		
9/29/04	0.00			11/20/04	0.00		
9/30/04	0.00	0.26		11/21/04	0.00		
10/1/04	0.33	0.20		11/22/04	0.00		
10/1/04	0.00			11/23/04	0.00		
10/2/04	0.00			11/24/04	0.00		
10/3/04	0.00			11/25/04	0.00		
10/4/04	0.00			11/26/04	0.00		
10/6/04	0.00			11/27/04	0.41		
10/7/04	0.00			11/28/04	0.00		
10/7/04	0.00			11/28/04	0.00		
10/8/04	0.00			11/29/04	0.00	2.41	
10/9/04	0.00			12/1/04	0.13	2.41	
10/11/04	0.00			12/1/04	0.00		
10/12/04	0.00			12/2/04	0.00		
10/12/04	0.00			12/3/04			
10/13/04	0.00			12/4/04	0.00		
10/14/04	0.01			12/5/04	0.35		
10/15/04	0.15			12/6/04	0.35		
10/16/04	0.00			12/7/04	0.00		
10/17/04	0.00			12/8/04	0.00		
10/18/04				12/9/04	0.04		
10/19/04	0.04			12/10/04	0.33		
10/20/04	0.00						
	0.00			12/12/04	0.00		
10/22/04	0.01			12/13/04	0.00		
10/23/04	0.58			12/14/04	0.00		
10/24/04	0.00			12/15/04	0.00		
10/25/04	0.00			12/16/04	0.00		
10/26/04	0.08			12/17/04	0.00		
10/27/04	0.00			12/18/04	0.00		
10/28/04	0.00			12/19/04	0.00		
10/29/04	0.10			12/20/04	0.01		

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
12/21/04	0.00			2/11/05	0.00		
12/22/04	0.00			2/12/05	0.00		
12/23/04	0.00			2/13/05	0.46		
12/24/04	0.00			2/14/05	0.11		
12/25/04	0.00			2/15/05	0.04		
12/26/04	0.00			2/16/05	0.00		
12/27/04	0.00			2/17/05	0.00		
12/28/04	0.00			2/18/05	0.00		
12/29/04	0.00			2/19/05	0.00		
12/30/04	0.02			2/20/05	0.80		
12/31/04	0.00	1.73		2/21/05	0.00		
1/1/05	0.42	1.70		2/22/05	0.00		
1/2/05	0.42			2/22/05	0.02		
1/3/05	0.45			2/23/05	0.00		
1/4/05	0.03			2/24/05	0.00		
1/4/05	0.03			2/25/05	0.04		
	0.19			2/28/05	0.00		
1/6/05						1 71	
1/7/05	0.00			2/28/05	0.05	1.71	
1/8/05	0.00			3/1/05	0.00		
1/9/05	0.00			3/2/05	0.00		
1/10/05	0.00			3/3/05	0.00		
1/11/05	0.00			3/4/05	0.00		
1/12/05	1.44			3/5/05	0.00		
1/13/05	0.00			3/6/05	0.00		
1/14/05	0.00			3/7/05	0.04		
1/15/05	0.00			3/8/05	0.00		
1/16/05	0.00			3/9/05	0.00		
1/17/05	0.00			3/10/05	0.08		
1/18/05	0.09			3/11/05	0.04		
1/19/05	0.00			3/12/05	0.01		
1/20/05	0.02			3/13/05	0.00		
1/21/05	0.15			3/14/05	0.00		
1/22/05	0.16			3/15/05	0.00		
1/23/05	0.00			3/16/05	0.01		
1/24/05	0.00			3/17/05	0.15		
1/25/05	0.00			3/18/05	0.05		
1/26/05	0.00			3/19/05	0.47		
1/27/05	0.00			3/20/05	0.00		
1/28/05	0.00			3/21/05	0.00		
1/29/05	0.00			3/22/05	0.00		
1/30/05	0.00	1		3/23/05	0.00		
1/31/05	0.00	3.37		3/24/05	0.00		
2/1/05	0.00	1		3/25/05	0.00		
2/2/05	0.00	1		3/26/05	0.00		
2/3/05	0.00	1		3/27/05	0.00		
2/4/05	0.00	1		3/28/05	0.00		
2/5/05	0.00	1		3/29/05	0.00		
2/6/05	0.05	1		3/30/05	0.20		
2/7/05	0.06	1		3/31/05	0.00	1.05	
2/8/05	0.00	1		4/1/05	0.33		1
2/9/05	0.03			4/2/05	0.00		
		+					
2/10/05	0.00			4/3/05	0.00		

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
4/4/05	0.00			5/26/05	0.00		
4/5/05	0.00			5/27/05	0.16		
4/6/05	0.41			5/28/05	0.00		
4/7/05	0.00			5/29/05	0.00		
4/8/05	0.00			5/30/05	0.00		
4/9/05	0.00			5/31/05	0.00	2.77	
4/10/05	0.00			6/1/05	0.00		
4/11/05	0.00			6/2/05	0.00		
4/12/05	0.00			6/3/05	0.00		
4/13/05	0.00			6/4/05	0.00		
4/14/05	0.00			6/5/05	0.24		
4/15/05	0.00			6/6/05	0.00		
4/16/05	0.02			6/7/05	0.00		
4/17/05	0.00			6/8/05	0.00		
4/18/05	0.00			6/9/05	0.00		
4/19/05	0.00			6/10/05	0.00		
4/20/05	0.15			6/11/05	0.03		
4/21/05	0.00			6/12/05	0.00		
4/22/05	0.16			6/13/05	0.42		
4/23/05	0.00			6/14/05	0.00		
4/24/05	0.00			6/15/05	0.00		
4/25/05	0.01			6/16/05	0.00		
4/26/05	0.00			6/17/05	0.00		
4/27/05	0.00			6/18/05	0.00		
4/28/05	0.00			6/19/05	0.00		
4/29/05	0.00			6/20/05	0.00		
4/30/05	0.00	1.08		6/21/05	0.00		
5/1/05	0.00			6/22/05	0.00		
5/2/05	0.00			6/23/05	0.00		
5/3/05	0.00			6/24/05	0.00		
5/4/05	0.00			6/25/05	0.26		
5/5/05	0.00			6/26/05	0.74		
5/6/05	0.42			6/27/05	0.00		
5/7/05	0.00			6/28/05	0.00		
5/8/05	0.00			6/29/05	0.00		
5/9/05	0.37			6/30/05	0.20	1.89	
5/10/05	0.00			7/1/05	0.00		
5/11/05	0.62			7/2/05	0.00		
5/12/05	0.00			7/3/05	0.00		
5/13/05	0.23			7/4/05	0.38		
5/14/05	0.00			7/5/05	0.00		
5/15/05	0.00			7/6/05	0.00		
5/16/05	0.00			7/7/05	0.00		
5/17/05	0.00			7/8/05	0.00		
5/18/05	0.00	1		7/9/05	0.00		
5/19/05	0.95	1		7/10/05	0.00		
5/20/05	0.00	1		7/11/05	0.00		
5/21/05	0.00	1		7/12/05	0.13		
5/22/05	0.02	1		7/13/05	0.03		
5/23/05	0.00	1		7/14/05	0.00		
5/24/05	0.00	1		7/15/05	0.00		
	0.00						

DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
			9/7/05			
	2 15					
	2.10					
					4 36	
					4.00	
	1.53					
	1.00					
0.00			10/28/05	0.00		
	TOTAL 0.00 0.00 0.00 0.31 0.40 0.00 0.31 0.40 0.00 0.36 0.00 0.36 0.00 0.03 0.51 0.00	TOTAL TOTAL 0.00 0.00 0.00 0.00 0.31 0.40 0.00 0.31 0.40 0.00 0.36 0.00 0.036 0.00 0.00 0.03 0.51 0.00 0.00 0.00 0.00 2.15 0.00 2.15 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	TOTAL TOTAL 0.00	TOTAL TOTAL 9/7/05 0.00 9/8/05 9/8/05 0.00 9/9/05 9/9/05 0.31 9/10/05 9/11/05 0.40 9/11/05 9/12/05 0.36 9/13/05 9/14/05 0.00 9/14/05 9/15/05 0.03 9/15/05 9/16/05 0.00 9/17/05 9/16/05 0.00 9/18/05 9/16/05 0.00 9/18/05 9/16/05 0.00 9/19/05 9/20/05 0.00 9/21/05 9/21/05 0.00 9/23/05 9/22/05 0.00 9/23/05 9/26/05 0.00 9/28/05 9/26/05 0.00 9/28/05 9/26/05 0.00 9/28/05 9/20/05 0.00 9/28/05 10/2/05 0.00 9/28/05 10/2/05 0.00 10/2/05 10/2/05 0.00 10/2/05 10/2/05 0.00 10/2/	TOTAL TOTAL 0.00 9/7/05 0.14 0.00 9/8/05 0.00 0.31 9/10/05 0.00 0.40 9/11/05 0.00 0.40 9/11/05 0.00 0.31 9/12/05 0.00 0.36 9/13/05 0.41 0.00 9/14/05 0.00 0.36 9/15/05 0.10 0.51 9/16/05 0.02 0.00 9/17/05 0.00 0.00 9/18/05 0.00 0.00 9/19/05 0.37 0.00 9/21/05 0.00 0.00 9/22/05 1.20 0.00 9/23/05 0.00 0.01 9/25/05 1.98 0.00 9/25/05 1.98 0.00 9/28/05 0.01 0.02 9/28/05 0.00 0.01 10/2/05 0.00 0.02 9/28/05 0.00 0.03 10	TOTAL TOTAL TOTAL TOTAL 0.00 9/7/05 0.14 0.00 9/8/05 0.00 0.00 9/9/05 0.00 0.31 9/10/05 0.00 0.40 9/11/05 0.00 0.40 9/11/05 0.00 0.33 9/13/05 0.41 0.00 9/14/05 0.00 0.33 9/15/05 0.10 0.51 9/16/05 0.00 0.00 9/17/05 0.00 0.00 9/17/05 0.00 0.00 9/17/05 0.00 0.00 9/20/05 0.00 0.00 9/21/05 0.00 0.00 9/22/05 1.20 0.00 9/22/05 1.20 0.00 9/22/05 0.01 0.02 9/25/05 1.98 0.00 9/26/05 0.01 0.01 9/26/05 0.01 0.02 9/26/05 0.00

DATE	DAILY	MONTHLY	COMMENT	DATE	DAILY	MONTHLY	COMMENT
	TOTAL	TOTAL			TOTAL	TOTAL	
10/29/05	0.00	_		12/20/05	0.00		
10/30/05	0.00			12/21/05	0.00		
10/31/05	0.00	0.51		12/22/05	0.00		
11/1/05	0.00			12/23/05	0.00		
11/2/05	0.00			12/24/05	0.00		
11/3/05	0.00			12/25/05	0.00		
11/4/05	0.00			12/26/05	0.00		
11/5/05	1.34			12/27/05	0.00		
11/6/05	0.57			12/28/05	0.02		
11/7/05	0.00			12/29/05	0.00		
11/8/05	0.02			12/30/05	0.30		
11/9/05	0.00			12/31/05	0.00	1.06	
11/10/05	0.00						
11/11/05	0.00						
11/12/05	0.22						
11/13/05	0.00						
11/14/05	0.22						
11/15/05	0.48						
11/16/05	0.06						
11/17/05	0.00						
11/18/05	0.00						
11/19/05	0.00						
11/20/05	0.00						
11/21/05	0.00						
11/22/05	0.00						
11/23/05	0.11						
11/24/05	0.00						
11/25/05	0.17						
11/26/05	0.00						
11/27/05	0.40						
11/28/05	0.68						
11/29/05	0.00						
11/30/05	0.00	4.27					
12/1/05	0.05						
12/2/05	0.00						
12/3/05	0.18						
12/4/05	0.06						
12/5/05	0.00						
12/6/05	0.00						
12/7/05	0.00						
12/8/05	0.14						
12/9/05	0.08						
12/10/05	0.00						
12/11/05	0.00						
12/12/05	0.00						
12/13/05	0.00						
12/14/05	0.20						
12/15/05	0.03						
12/16/05	0.00						
12/17/05	0.00						
12/18/05	0.00						
12/19/05	0.00						

APPENDIX D SUMMARY STATISTICS, UNDERWOOD CREEK WATER QUALITY DATA Variable Abbreviations Table

Variable:	рН	TEMP	DO	AMMONIA	NITRITE	NITRATE	PHOS	SOLPHOS	SOLSIL	CHLA
Full Name:	рН	Temperature	Dissolved Oxygen	Ammonia	Nitrite	Nitrate	Phosphorus	Soluble Phosphorus	Soluble Silica	Chloro- phyll a
Variable:	SS	VSS	TS	FECAL	SPEC	CHLOR	AA_CD	CR	CU	NI
Full Name:	Suspended Solids	Volatile Suspended Solids	Total Solids	Fecal Coliform Bacteria	Specific Conductance	Chloride	Cadmium	Chromium	Copper	Nickel
Variable:	AA_PB	ZN	CA	MG	AA_AG	AA_AS	AA_SE	DS	LFC	HARD
Full Name:	Lead	Zinc	Calcium	Magnesium	Silver	Arsenic	Selenium	Dissolved Solids	Log Fecal Coliform Bacteria	Hardness
Variable:	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK	ECOLIQT
Full Name:	Secchi Disk	Turbidity	5 day Biological Oxygen Demand	20 day Biological Oxygen Demand	Photometer	Total Organic Carbon	Total Inorganic Carbon	Total Dissolved Organic Carbon	Total Alkalinity	<i>Escherichia</i> <i>coli</i> E. coli

The following notations apply to all the following Summary Statistics, Underwood Creek Water Quality Data:

ND – No Data.

Method Detection Limit is the "Minimum" Value for data.

Summary	Statis	tics, une	aerwood	Creek Wate	r Quality Da	ta: 2003, 5		, Pilgrim	Road in wi	th Park	
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.0	14.8	5.8	0.054	0.012	0.34	1.10	0.080	0.031	ND	9.44
Standard Error	0.1	1.3	0.8	0.016	0.005	0.28	0.29	0.005	0.006	ND	3.26
Median	7.0	16.3	5.7	0.052	0.008	0.05	0.84	0.079	0.033	ND	5.36
Mode	ND	ND	ND	ND	0.000	ND	ND	0.077	ND	ND	ND
Standard Deviation	0.2	3.7	2.2	0.045	0.014	0.79	0.81	0.015	0.018	ND	9.21
Sample Variance	0.0	13.3	4.6	0.002	0.000	0.63	0.66	0.000	0.000	ND	84.91
Kurtosis	0.1	0.0	-2.3	0.593	-1.719	7.91	0.33	1.629	-0.378	ND	1.27
Skewness	-0.3	-1.3	0.1	0.868	0.508	2.81	1.22	-0.719	-0.566	ND	1.55
Range	0.6	9.1	4.9	0.140	0.032	2.30	2.34	0.049	0.053	0.00	25.22
Minimum	6.7	8.3	3.5	0.000	0.000	0.00	0.26	0.051	0.000	0.00	2.58
Maximum	7.3	17.4	8.4	0.140	0.032	2.30	2.60	0.100	0.053	0.00	27.80
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.2	3.1	1.8	0.038	0.012	0.66	0.68	0.012	0.015	ND	7.70

APPENDIX E

VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
				CFU/100	MPN/100						
units	mg/L	mg/L	mg/L	mL	mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	5.3	1.4	898.8	4290	6011	1404	251.3	0.0	1.0	1.5	2.1
Standard Error	1.1	0.6	41.1	4102	5714	68	32.7	0.0	1.0	1.5	0.3
Median	4.4	0.8	935.0	160	245	1443	250.0	0.0	1.0	1.5	2.1
Mode	ND	0.0	ND	ND	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	3.1	1.7	116.2	11602	16161	192	92.5	0.0	1.3	2.1	0.5
Sample Variance	9.4	2.9	13498.2	134599779	261169631	36704	8555.4	0.0	1.8	4.5	0.2
Kurtosis	3.4	-1.0	2.8	8	8	1	-0.1	ND	ND	ND	ND
Skewness	1.7	0.7	-1.6	3	3	-1	0.3	ND	ND	ND	ND
Range	9.7	4.3	350.0	32960	45988	605	280.0	0.0	1.9	3.0	0.7
Minimum	2.3	0.0	650.0	40	12	1055	130.0	0.0	0.0	0.0	1.7
Maximum	12.0	4.3	1000.0	33000	46000	1660	410.0	0.0	1.9	3.0	2.4
Count	8	8	8	8	8	8	8	2	2	2	2
Confidence Level (95.0%)	2.6	1.4	97.1	9699	13511	160	77.3	0.0	12.1	19.1	4.4

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-01, Pilgrim Road in Wirth Park

VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
VAINABLE	10	211	04	110	70		52	110	23	CFU/100	TIAND
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	mL	mg/L
STATISTICS											
Mean	2.0	6.4	99.50	41.00	0.0	4.7	0.0	0.0	893.5	2.4	415
Standard Error	2.0	0.7	10.50	3.00	0.0	4.7	0.0	0.0	40.5	0.3	35
Median	2.0	6.4	99.50	41.00	0.0	4.7	0.0	0.0	931.7	2.2	415
Mode	ND	ND	ND	ND	0.0	ND	0.0	0.0	ND	ND	ND
Standard Deviation	2.8	1.0	14.85	4.24	0.0	6.6	0.0	0.0	114.6	0.9	49
Sample Variance	7.6	1.0	220.50	18.00	0.0	44.2	0.0	0.0	13124.7	0.8	2450
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	2.8	5.0	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-1.6	2.1	ND
Range	3.9	1.4	21.00	6.00	0.0	9.4	0.0	0.0	340.3	2.9	70
Minimum	0.0	5.7	89.00	38.00	0.0	0.0	0.0	0.0	647.7	1.6	380
Maximum	3.9	7.1	110.00	44.00	0.0	9.4	0.0	0.0	988.0	4.5	450
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	24.8	8.9	133.41	38.12	0.0	59.7	0.0	0.0	95.8	0.8	445
			-				,				
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK]	
VARIABLE	SCHII meters	TURB NTU	BOD5 mg/L	BOD20 mg/L	IXLITE meters	TNOC mg/L	TNIC mg/L	TNDOC mg/L	TALK mg/L		
units											
units STATISTICS	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
units STATISTICS Mean	meters ND	NTU 3.6	<i>mg/L</i> 1.3	mg/L 8.2	meters ND	<i>mg/L</i> 10.5	mg/L 60.8	<i>mg/L</i> 9.5	mg/L 254		
units STATISTICS Mean Standard Error	meters ND ND	NTU 3.6 0.6	<u>mg/L</u> 1.3 0.5	mg/L 8.2 0.4	ND ND	mg/L 10.5 1.4	mg/L 60.8 5.0	9.5 1.3	mg/L 254 22		
units STATISTICS Mean Standard Error Median	meters ND ND ND	NTU 3.6 0.6 2.9	<i>mg/L</i> 1.3 0.5 1.0	mg/L 8.2 0.4 7.8	ND ND ND ND	mg/L 10.5 1.4 10.0	<u>mg/L</u> 60.8 5.0 61.0	9.5 1.3 9.4	mg/L 254 22 255		
units STATISTICS Mean Standard Error Median Mode	metersNDNDNDND	NTU 3.6 0.6 2.9 ND	<u>mg/L</u> 1.3 0.5 1.0 0.0	<u>mg/L</u> 8.2 0.4 7.8 7.9	ND ND ND ND ND	<u>mg/L</u> 10.5 1.4 10.0 ND	<u>mg/L</u> 60.8 5.0 61.0 61.0	9.5 1.3 9.4 ND	<u>mg/L</u> 254 22 255 310		
units STATISTICS Mean Standard Error Median Mode Standard Deviation	metersNDNDNDNDNDND	NTU 3.6 0.6 2.9 ND 1.8	<u>mg/L</u> 1.3 0.5 1.0 0.0 1.5	<u>mg/L</u> 8.2 0.4 7.8 7.9 1.2	meters ND ND ND ND ND ND ND	mg/L 10.5 1.4 10.0 ND 4.0	mg/L 60.8 5.0 61.0 61.0 14.3	mg/L 9.5 1.3 9.4 ND 3.7	mg/L 254 22 255 310 62		
unitsSTATISTICSMeanStandard ErrorMedianModeStandard DeviationSample Variance	metersNDNDNDNDNDNDND	NTU 3.6 0.6 2.9 ND 1.8 3.2	<u>mg/L</u> 1.3 0.5 1.0 0.0 1.5 2.1	mg/L 8.2 0.4 7.8 7.9 1.2 1.5	meters ND ND ND ND ND ND ND ND	mg/L 10.5 1.4 10.0 ND 4.0 16.3	mg/L 60.8 5.0 61.0 61.0 14.3 203.4	9.5 1.3 9.4 ND 3.7 13.5	mg/L 254 22 255 310 62 3855		
unitsSTATISTICSMeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosis	metersNDNDNDNDNDNDNDND	NTU 3.6 0.6 2.9 ND 1.8 3.2 -0.5	<u>mg/L</u> 1.3 0.5 1.0 0.0 1.5 2.1 -1.7	<u>mg/L</u> 8.2 0.4 7.8 7.9 1.2 1.5 4.7	meters ND	<u>mg/L</u> 10.5 1.4 10.0 ND 4.0 16.3 0.4	mg/L 60.8 5.0 61.0 61.0 14.3 203.4 1.0	<u>mg/L</u> 9.5 1.3 9.4 ND 3.7 13.5 -0.1	<u>mg/L</u> 254 22 255 310 62 3855 -1		
unitsSTATISTICSMeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewness	metersNDNDNDNDNDNDNDNDNDND	NTU 3.6 0.6 2.9 ND 1.8 3.2 -0.5 1.1	<u>mg/L</u> 1.3 0.5 1.0 0.0 1.5 2.1 -1.7 0.4	mg/L 8.2 0.4 7.8 7.9 1.2 1.5 4.7 2.1	metersNDNDNDNDNDNDNDNDNDNDND	mg/L 10.5 1.4 10.0 ND 4.0 16.3 0.4 0.2	mg/L 60.8 5.0 61.0 14.3 203.4 1.0 -0.9	mg/L 9.5 1.3 9.4 ND 3.7 13.5 -0.1 0.1	mg/L 254 22 255 310 62 3855 -1 0		
unitsSTATISTICSMeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewnessRange	metersNDNDNDNDNDNDNDNDND0.0	NTU 3.6 0.6 2.9 ND 1.8 3.2 -0.5 1.1 4.7	mg/L 1.3 0.5 1.0 0.0 1.5 2.1 -1.7 0.4 3.6	mg/L 8.2 0.4 7.8 7.9 1.2 1.5 4.7 2.1 3.8	metersNDNDNDNDNDNDNDNDND0.0	mg/L 10.5 1.4 10.0 ND 4.0 16.3 0.4 0.2 13.1	mg/L 60.8 5.0 61.0 14.3 203.4 1.0 -0.9 43.0	mg/L 9.5 1.3 9.4 ND 3.7 13.5 -0.1 0.1 11.4	mg/L 254 22 255 310 62 3855 -1 0 180		
unitsSTATISTICSMeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewnessRangeMinimum	meters ND ND ND ND ND ND ND ND 0.0	NTU 3.6 0.6 2.9 ND 1.8 3.2 -0.5 1.1 4.7 1.9	mg/L 1.3 0.5 1.0 0.0 1.5 2.1 -1.7 0.4 3.6 0.0	mg/L 8.2 0.4 7.8 7.9 1.2 1.5 4.7 2.1 3.8 7.2	meters ND ND ND ND ND ND ND ND ND 0.0 0.0	mg/L 10.5 1.4 10.0 ND 4.0 16.3 0.4 0.2 13.1 3.9	mg/L 60.8 5.0 61.0 61.0 14.3 203.4 1.0 -0.9 43.0 33.0	mg/L 9.5 1.3 9.4 ND 3.7 13.5 -0.1 0.1 11.4 3.6	mg/L 254 22 255 310 62 3855 -1 0 180 150		

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-01, Pilgrim Road in Wirth Park

VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.0	13.7	5.7	0.058	0.022	0.93	1.28	0.062	0.028	ND	11.79
Standard Error	0.1	1.8	1.2	0.019	0.009	0.58	0.20	0.009	0.007	ND	4.50
Median	7.0	13.2	5.1	0.039	0.023	0.29	1.25	0.064	0.031	ND	6.36
Mode	ND	ND	ND	ND	0.000	0.09	ND	ND	0.000	ND	ND
Standard Deviation	0.3	5.0	3.5	0.053	0.024	1.64	0.56	0.024	0.020	ND	12.72
Sample Variance	0.1	24.7	12.3	0.003	0.001	2.69	0.31	0.001	0.000	ND	161.72
Kurtosis	-1.3	-1.1	-0.9	0.857	2.977	6.95	0.16	1.750	-0.758	ND	1.32
Skewness	-0.3	-0.2	0.8	1.437	1.496	2.59	0.69	0.819	-0.519	ND	1.37
Range	0.7	14.1	8.9	0.149	0.074	4.84	1.65	0.079	0.054	0.00	35.88
Minimum	6.6	5.8	2.2	0.011	0.000	0.06	0.65	0.031	0.000	0.00	1.52
Maximum	7.3	19.9	11.1	0.160	0.074	4.90	2.30	0.110	0.054	0.00	37.40
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.2	4.2	2.9	0.044	0.020	1.37	0.47	0.020	0.016	ND	10.63
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
				CFU/100	MPN/100		mg/L	ug/L	"		
units	mg/L	mg/L	mg/L	mL	mL	umhos/cm	IIIY/L	uy/L	ug/L	ug/L	ug/L
units STATISTICS	mg/L	mg/L	mg/L	mL	mL	umnos/cm	IIIg/L	uy/L	ug/L	ug/L	ug/L
	<i>mg/L</i> 6.1	mg/L 2.2	<u>mg/L</u> 908.8	<u>mL</u> 811	<u>mL</u> 513	1439	258.8	0.0	0.8	ug/L 3.2	2.0
STATISTICS											
STATISTICS Mean	6.1	2.2	908.8	811	513	1439	258.8	0.0	0.8	3.2	2.0
STATISTICS Mean Standard Error	6.1 1.3	2.2 0.3	908.8 97.3	811 631	513 322	1439 154	258.8 39.9	0.0	0.8 0.8	3.2 0.7	2.0 0.0
STATISTICS Mean Standard Error Median	6.1 1.3 4.7	2.2 0.3 2.1	908.8 97.3 985.0	811 631 115	513 322 100	1439 154 1525	258.8 39.9 215.0	0.0 0.0 0.0	0.8 0.8 0.8	3.2 0.7 3.2	2.0 0.0 2.0
STATISTICS Mean Standard Error Median Mode	6.1 1.3 4.7 ND	2.2 0.3 2.1 2.6	908.8 97.3 985.0 1100.0	811 631 115 ND	513 322 100 ND	1439 154 1525 ND	258.8 39.9 215.0 420.0	0.0 0.0 0.0 0.0	0.8 0.8 0.8 ND	3.2 0.7 3.2 ND	2.0 0.0 2.0 ND
STATISTICS Mean Standard Error Median Mode Standard Deviation	6.1 1.3 4.7 ND 3.6	2.2 0.3 2.1 2.6 1.0	908.8 97.3 985.0 1100.0 275.3	811 631 115 ND 1785	513 322 100 ND 911	1439 154 1525 ND 436	258.8 39.9 215.0 420.0 112.9	0.0 0.0 0.0 0.0 0.0 0.0	0.8 0.8 0.8 ND 1.1	3.2 0.7 3.2 ND 1.0	2.0 0.0 2.0 ND 0.1
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance	6.1 1.3 4.7 ND 3.6 13.3	2.2 0.3 2.1 2.6 1.0 1.0	908.8 97.3 985.0 1100.0 275.3 75783.9	811 631 115 ND 1785 3184795	513 322 100 ND 911 829628	1439 154 1525 ND 436 190430	258.8 39.9 215.0 420.0 112.9 12755.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.8 0.8 0.8 ND 1.1 1.3	3.2 0.7 3.2 ND 1.0 1.0	2.0 0.0 2.0 ND 0.1 0.0
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	6.1 1.3 4.7 ND 3.6 13.3 0.3	2.2 0.3 2.1 2.6 1.0 1.0 -1.6	908.8 97.3 985.0 1100.0 275.3 75783.9 0.3	811 631 115 ND 1785 3184795 8	513 322 100 ND 911 829628 7	1439 154 1525 ND 436 190430 0	258.8 39.9 215.0 420.0 112.9 12755.4 -1.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND	0.8 0.8 0.8 ND 1.1 1.3 ND	3.2 0.7 3.2 ND 1.0 1.0 ND	2.0 0.0 2.0 ND 0.1 0.0 ND
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	6.1 1.3 4.7 ND 3.6 13.3 0.3 1.0	2.2 0.3 2.1 2.6 1.0 1.0 -1.6 0.3	908.8 97.3 985.0 1100.0 275.3 75783.9 0.3 -1.1	811 631 115 ND 1785 3184795 8 3	513 322 100 ND 911 829628 7 3	1439 154 1525 ND 436 190430 0 -1	258.8 39.9 215.0 420.0 112.9 12755.4 -1.1 0.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND	0.8 0.8 0.8 ND 1.1 1.3 ND ND ND	3.2 0.7 3.2 ND 1.0 1.0 ND ND	2.0 0.0 2.0 ND 0.1 0.0 ND ND
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	6.1 1.3 4.7 ND 3.6 13.3 0.3 1.0 10.4	2.2 0.3 2.1 2.6 1.0 1.0 -1.6 0.3 2.6	908.8 97.3 985.0 1100.0 275.3 75783.9 0.3 -1.1 800.0	811 631 115 ND 1785 3184795 8 3 3 5172	513 322 100 ND 911 829628 7 3 2677	1439 154 1525 ND 436 190430 0 -1 1240	258.8 39.9 215.0 420.0 112.9 12755.4 -1.1 0.6 290.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND 0.0	0.8 0.8 0.8 ND 1.1 1.3 ND ND 1.6	3.2 0.7 3.2 ND 1.0 1.0 ND ND 1.4	2.0 0.0 2.0 ND 0.1 0.0 ND ND 0.1
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	6.1 1.3 4.7 ND 3.6 13.3 0.3 1.0 10.4 2.6	2.2 0.3 2.1 2.6 1.0 1.0 -1.6 0.3 2.6 1.0	908.8 97.3 985.0 1100.0 275.3 75783.9 0.3 -1.1 800.0 400.0	811 631 115 ND 1785 3184795 8 3 3 5172 28	513 322 100 ND 911 829628 7 3 2677 23	1439 154 1525 ND 436 190430 0 -1 1240 709	258.8 39.9 215.0 420.0 112.9 12755.4 -1.1 0.6 290.0 130.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND 0.0 0.0	0.8 0.8 0.8 ND 1.1 1.3 ND ND 1.6 0.0	3.2 0.7 3.2 ND 1.0 1.0 ND ND 1.4 2.5	2.0 0.0 2.0 ND 0.1 0.0 ND 0.1 0.1 1.9

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-01, Pilgrim Road in Wirth Park

VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
			··· · //							CFU/100	
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	mL	mg/L
STATISTICS											
Mean	0.0	7.0	82.50	34.50	0.9	2.7	0.0	0.0	902.7	2.3	345
Standard Error	0.0	7.0	47.50	20.50	0.4	2.7	0.0	0.0	97.7	0.3	205
Median	0.0	7.0	82.50	34.50	0.9	2.7	0.0	0.0	979.2	2.1	345
Mode	0.0	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	9.9	67.18	28.99	0.6	3.8	0.0	0.0	276.4	0.7	290
Sample Variance	0.0	98.0	4512.50	840.50	0.3	14.6	0.0	0.0	76423.8	0.5	84050
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	0.2	1.4	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-1.1	1.1	ND
Range	0.0	14.0	95.00	41.00	0.8	5.4	0.0	0.0	799.4	2.3	410
Minimum	0.0	0.0	35.00	14.00	0.5	0.0	0.0	0.0	396.4	1.4	140
Maximum	0.0	14.0	130.00	55.00	1.3	5.4	0.0	0.0	1195.8	3.7	550
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	88.9	603.54	260.48	5.3	34.3	0.0	0.0	231.1	0.6	2605
	-	•								-	•
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS											
Mean	ND	3.7	0.8	9.2	ND	12.8	56.3	12.5	235		
Standard Error	ND	1.1	0.5	1.1	ND	2.9	12.7	4.8	27		
Median	ND	2.5	0.0	8.2	ND	12.2	59.5	9.0	245		
Mode	ND	ND	0.0	8.2	ND	ND	ND	ND	ND		
Standard Deviation	ND	3.2	1.5	3.2	ND	5.9	25.3	8.3	77	1	
Sample Variance	ND	10.1	2.1	10.1	ND	34.6	642.3	69.3	5857	1	
Kurtosis	ND	5.7	2.2	0.5	ND	-2.1	0.6	ND	1	1	
Skewness	ND	2.4	1.8	1.1	ND	0.4	-0.7	1.6	-1	1	
Range	0.0	9.5	3.8	9.8	0.0	13.1	60.0	15.5	230	1	
*						1	1	1		-	

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-01, Pilgrim Road in Wirth Park

Minimum

Maximum

Confidence Level (95.0%)

Count

1.8

11.2

8

2.7

0.0

0.0

0

ND

0.0

3.8

8

1.2

5.2

15.0

8

2.7

0.0

0.0

0

ND

6.9

20.0

4

9.4

23.0

83.0

4

40.3

6.5

22.0

3

20.7

90

320

8

64

VARIABLE	PH	C	DO mg/L	AMMONIA mg/L	NITRITE mg/L	NITRATE mg/L	TKN mg/L	PHOS mg/L	SOLPHOS mg/L	SOLSIL mg/L	CHLA mg/m3
	su		IIIg/L	mg/∟	IIIg/L	IIIg/L	IIIy/L	IIIY/L	IIIg/∟	IIIg/L	my/ms
STATISTICS											
Mean	6.8	15.6	2.6	0.041	0.019	0.17	1.02	0.209	0.085	ND	9.62
Standard Error	0.1	1.8	1.0	0.033	0.004	0.08	0.14	0.076	0.027	ND	4.86
Median	6.8	16.0	1.3	0.011	0.016	0.09	1.02	0.104	0.061	ND	4.37
Mode	ND	ND	1.2	0.000	ND	ND	1.20	0.051	ND	ND	ND
Standard Deviation	0.3	5.2	2.9	0.093	0.011	0.21	0.40	0.214	0.075	ND	13.74
Sample Variance	0.1	26.7	8.7	0.009	0.000	0.05	0.16	0.046	0.006	ND	188.84
Kurtosis	-0.9	-0.3	0.2	7.846	-0.185	3.77	0.90	-0.397	1.864	ND	6.86
Skewness	-0.2	-0.5	1.4	2.792	0.987	1.92	0.88	1.207	1.437	ND	2.57
Range	0.7	15.8	7.7	0.270	0.030	0.62	1.25	0.499	0.221	0.00	41.79
Minimum	6.4	6.6	0.1	0.000	0.007	0.02	0.55	0.051	0.019	0.00	1.01
Maximum	7.2	22.3	7.9	0.270	0.037	0.64	1.80	0.550	0.240	0.00	42.80
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.2	4.3	2.5	0.078	0.009	0.18	0.34	0.179	0.063	ND	11.49
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
				CFU/100	MPN/100		"	"			
units	mg/L	mg/L	mg/L	mL	mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	11.0	4.2	958.8	1939	3245	1589	281.3	0.0	5.8	18.0	2.5
Standard Error	2.9	1.0	66.2	1085	2450	108	35.4	0.0	0.7	0.0	0.6
Median	10.1	4.1	955.0	335	285	1494	240.0	0.0	5.8	18.0	2.5
Mode	ND	ND	1100.0	ND	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	8.2	2.7	187.3	3069	6929	304	100.1	0.0	0.9	ND	0.8
Sample Variance	66.6	7.4	35069.6	9417696	48009343	92484	10012.5	0.0	0.8	ND	0.7
Kurtosis	0.0	0.0	1.4	1	7	0	-1.2	ND	ND	ND	ND
Skewness	0.8	0.7	-0.9	2	3	0	0.7	ND	ND	ND	ND
Range	23.2	8.0	610.0	7793	19983	967	260.0	0.0	1.3	0.0	1.2
Minimum	2.8	1.2	590.0	7	17	1086	170.0	0.0	5.1	18.0	1.9
Maximum	26.0	9.2	1200.0	7800	20000	2053	430.0	0.0	6.4	18.0	3.1
Count	8	8	8	8	8	8	8	2	2	1	2
Count	0	<u> </u>	0	0	•	0	0		—		

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-01, Pilgrim Road in Wirth Park

VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
										CFU/100	
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	mL	mg/L
STATISTICS											
Mean	0.0	13.5	103.00	43.50	0.6	0.0	0.0	0.0	947.8	2.5	440
Standard Error	0.0	13.5	7.00	4.50	0.6	0.0	0.0	0.0	65.5	0.4	40
Median	0.0	13.5	103.00	43.50	0.6	0.0	0.0	0.0	940.3	2.4	440
Mode	0.0	ND	ND	ND	ND	0.0	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	19.1	9.90	6.36	0.8	0.0	0.0	0.0	185.3	1.1	57
Sample Variance	0.0	364.5	98.00	40.50	0.6	0.0	0.0	0.0	34333.4	1.2	3200
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	1.2	-1.1	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.9	-0.1	ND
Range	0.0	27.0	14.00	9.00	1.1	0.0	0.0	0.0	594.8	3.0	80
Minimum	0.0	0.0	96.00	39.00	0.0	0.0	0.0	0.0	587.2	0.8	400
Maximum	0.0	27.0	110.00	48.00	1.1	0.0	0.0	0.0	1182.0	3.9	480
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	171.5	88.94	57.18	7.0	0.0	0.0	0.0	154.9	0.9	508
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS											
Mean	ND	4.5	1.2	7.6	ND	12.2	64.6	11.2	266		
Standard Error	ND	1.4	0.5	1.6	ND	2.4	5.8	2.4	20		
Median	ND	2.6	1.1	7.9	ND	10.0	69.0	7.4	275		
Mode	ND	ND	0.0			7.0		ND	310		
		ND	0.0	ND	ND	7.6	ND	ND	310		
Standard Deviation	ND	3.9	1.3	ND 4.5	ND ND	7.6 6.3	15.4	6.2	57		
Standard Deviation Sample Variance	ND ND										
		3.9	1.3	4.5	ND	6.3	15.4	6.2	57		
Sample Variance	ND	3.9 15.2	1.3 1.7	4.5 20.3	ND ND	6.3 39.7	15.4 237.3	6.2 39.0	57 3227		
Sample Variance Kurtosis	ND ND	3.9 15.2 2.3	1.3 1.7 -2.8	4.5 20.3 0.6	ND ND ND	6.3 39.7 -2.2	15.4 237.3 3.0	6.2 39.0 -2.3	57 3227 0		
Sample Variance Kurtosis Skewness	ND ND ND	3.9 15.2 2.3 1.8	1.3 1.7 -2.8 0.0	4.5 20.3 0.6 -0.1	ND ND ND ND	6.3 39.7 -2.2 0.2	15.4 237.3 3.0 -1.3	6.2 39.0 -2.3 0.3	57 3227 0 -1		
Sample Variance Kurtosis Skewness Range	ND ND ND 0.0	3.9 15.2 2.3 1.8 10.9	1.3 1.7 -2.8 0.0 2.5	4.5 20.3 0.6 -0.1 15.0	ND ND ND ND 0.0	6.3 39.7 -2.2 0.2 15.6	15.4 237.3 3.0 -1.3 50.0	6.2 39.0 -2.3 0.3 14.9	57 3227 0 -1 170		
Sample Variance Kurtosis Skewness Range Minimum	ND ND 0.0 0.0	3.9 15.2 2.3 1.8 10.9 1.8	1.3 1.7 -2.8 0.0 2.5 0.0	4.5 20.3 0.6 -0.1 15.0 0.0	ND ND ND 0.0 0.0	6.3 39.7 -2.2 0.2 15.6 4.4	15.4 237.3 3.0 -1.3 50.0 34.0	6.2 39.0 -2.3 0.3 14.9 4.1	57 3227 0 -1 170 160		

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-01, Pilgrim Road in Wirth Park

5.8

ND

5.8

47

14.2

3.8

ND

Confidence Level (95.0%)

3.3

1.1

Summary					Quality Dat						
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.6	15.3	6.4	0.121	0.023	0.42	1.25	0.145	0.090	ND	8.15
Standard Error	0.1	1.7	0.9	0.029	0.006	0.19	0.19	0.041	0.035	ND	4.35
Median	7.7	15.8	6.6	0.116	0.026	0.29	1.03	0.130	0.070	ND	3.28
Mode	ND	ND	ND	ND	0.000	ND	ND	0.130	ND	ND	ND
Standard Deviation	0.2	4.8	2.6	0.083	0.016	0.54	0.55	0.115	0.099	ND	12.31
Sample Variance	0.1	23.2	6.8	0.007	0.000	0.29	0.30	0.013	0.010	ND	151.57
Kurtosis	2.8	-0.1	1.5	-0.530	-0.744	6.44	0.50	5.087	5.520	ND	5.99
Skewness	-1.4	-0.9	-0.8	0.355	-0.416	2.45	1.21	2.089	2.178	ND	2.41
Range	0.7	14.2	8.3	0.248	0.045	1.65	1.53	0.371	0.320	0.00	36.11
Minimum	7.2	6.8	1.3	0.012	0.000	0.05	0.77	0.039	0.000	0.00	1.19
Maximum	7.9	21.0	9.7	0.260	0.045	1.70	2.30	0.410	0.320	0.00	37.30
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.2	4.0	2.2	0.069	0.014	0.45	0.46	0.096	0.083	ND	10.29
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mq/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS								<u></u> g,	<u></u>	; <u> </u>	<u></u>
Mean	18.1	3.1	843.8	11319	4996	1319	238.8	0.0	3.0	3.4	2.7
Standard Error	5.3	1.2	43.0	10244	3730	67	24.2	0.0	1.3	1.1	0.2
Median	12.5	2.2	880.0	1100	1110	1371	240.0	0.0	3.0	3.4	2.7
Mode	ND	0.0	880.0	1100	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	15.0	3.3	121.5	28974	10549	190	68.5	0.0	1.8	1.5	0.3
Sample Variance	226.1	10.8	14769.6	839476389	111285284	36166	4698.2	0.0	3.4	2.2	0.1
Kurtosis	-1.3	-1.6	6.9	8	8	6	-1.3	ND	ND	ND	ND
Skewness	0.7	0.6	-2.6	3	3	-2	-0.3	ND	ND	ND	ND
Range	37.6	7.9	370.0	82907	30850	635	190.0	0.0	2.6	2.1	0.4
Minimum	3.4	0.0	550.0	93	150	869	130.0	0.0	1.7	2.3	2.5
Maximum	41.0	7.9	920.0	83000	31000	1504	320.0	0.0	4.3	4.4	2.9
Count	8	8	8	8	8	8	8	2	2	2	2
Confidence Level (95.0%)	12.6	2.7	101.6	24223	8819	159	57.3	0.0	16.5	13.3	2.5

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-02, Lilly Road & Marcella Street

							<u> </u>				
VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS				<u>y</u>							
Mean	4.5	16.0	79.50	34.00	0.0	5.0	0.0	0.0	825.6	3.1	345
Standard Error	2.0	4.0	20.50	9.00	0.0	5.0	0.0	0.0	45.7	0.3	95
Median	4.5	16.0	79.50	34.00	0.0	5.0	0.0	0.0	867.5	3.0	345
Mode	ND	ND	ND	ND	0.0	ND	0.0	ND	ND	3.0	ND
Standard Deviation	2.8	5.7	28.99	12.73	0.0	7.1	0.0	0.0	129.3	0.8	134
Sample Variance	8.0	32.0	840.50	162.00	0.0	50.0	0.0	0.0	16712.9	0.7	18050
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	7.1	3.3	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-2.6	1.3	ND
Range	4.0	8.0	41.00	18.00	0.0	10.0	0.0	0.1	400.1	3.0	190
Minimum	2.5	12.0	59.00	25.00	0.0	0.0	0.0	0.0	512.0	2.0	250
Maximum	6.5	20.0	100.00	43.00	0.0	10.0	0.0	0.1	912.1	4.9	440
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	25.4	50.8	260.48	114.36	0.0	63.5	0.0	0.4	108.1	0.7	1207
	F					r	r	r		1	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS											
Mean	ND	10.2	1.7	8.9	ND	11.8	56.5	10.2	238		
Standard Error	ND	2.1	0.8	1.0	ND	0.8	5.8	0.8	25]	
Median	ND	11.0	1.0	8.2	ND	12.5	54.0	11.0	230]	
Mode	ND	12.6	0.0	ND	ND	13.0	ND	11.0	320]	
Standard Deviation	ND	6.0	2.1	2.8	ND	2.3	16.5	2.4	69		

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-02, Lilly Road & Marcella Street

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	10.2	1.7	8.9	ND	11.8	56.5	10.2	238
Standard Error	ND	2.1	0.8	1.0	ND	0.8	5.8	0.8	25
Median	ND	11.0	1.0	8.2	ND	12.5	54.0	11.0	230
Mode	ND	12.6	0.0	ND	ND	13.0	ND	11.0	320
Standard Deviation	ND	6.0	2.1	2.8	ND	2.3	16.5	2.4	69
Sample Variance	ND	36.0	4.5	7.6	ND	5.1	271.7	5.7	4821
Kurtosis	ND	0.3	-0.2	4.0	ND	-0.7	-1.2	-1.1	-2
Skewness	ND	0.6	1.0	1.8	ND	-0.4	0.1	0.1	0
Range	0.0	17.9	5.6	9.0	0.0	6.6	46.0	6.8	170
Minimum	0.0	3.4	0.0	6.0	0.0	8.4	35.0	7.2	150
Maximum	0.0	21.3	5.6	15.0	0.0	15.0	81.0	14.0	320
Count	0	8	8	8	0	8	8	8	8
Confidence Level (95.0%)	ND	5.0	1.8	2.3	ND	1.9	13.8	2.0	58

VARIABLE	PH	TEMP	DO		NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.7	13.8	8.2	0.039	0.010	0.80	1.11	0.061	0.030	ND	5.05
Standard Error	0.1	2.1	1.2	0.013	0.005	0.42	0.14	0.011	0.007	ND	2.09
Median	7.8	14.1	7.6	0.027	0.007	0.51	1.10	0.052	0.026	ND	2.67
Mode	ND	ND	ND	ND	0.000	ND	1.60	ND	ND	ND	ND
Standard Deviation	0.4	5.9	3.4	0.036	0.013	1.20	0.40	0.030	0.018	ND	5.90
Sample Variance	0.1	34.8	11.4	0.001	0.000	1.44	0.16	0.001	0.000	ND	34.84
Kurtosis	-0.1	-1.2	-0.5	1.227	2.304	6.86	-1.68	2.978	-0.638	ND	3.15
Skewness	-1.1	-0.4	0.5	1.473	1.473	2.56	0.02	1.556	-0.431	ND	1.87
Range	1.1	16.6	9.6	0.100	0.037	3.66	1.04	0.091	0.052	0.00	17.49
Minimum	7.0	4.2	3.5	0.010	0.000	0.04	0.56	0.029	0.000	0.00	0.41
Maximum	8.1	20.8	13.1	0.110	0.037	3.70	1.60	0.120	0.052	0.00	17.90
Count	8	8	8	8	8	8	8	7	7	0	8
Confidence Level (95.0%)	0.3	4.9	2.8	0.030	0.011	1.00	0.34	0.027	0.017	ND	4.93
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	СИ	NI
VARIABLE		V33	13	CFU/100	MPN/100	SPEC	CHLOR	CD	CR	0	INI
units	mg/L	mg/L	mg/L	mL	mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
	L										
Mean	8.1	2.1	846.3	1640	1703	1331	228.1	0.0	0.6	3.8	2.1
Mean Standard Error	8.1 2.5	2.1 0.6	846.3 95.2	1640 648	1703 785	1331 145	228.1 32.8	0.0	0.6	<u>3.8</u> 1.0	2.1 0.1
Standard Error	2.5	0.6	95.2	648	785	145	32.8	0.0	0.6	1.0	0.1
Standard Error Median	2.5 6.6	0.6 1.7	95.2 905.0	648 1065	785 720	145 1469	32.8 215.0	0.0 0.0	0.6 0.6	1.0 3.8	0.1 2.1
Standard Error Median Mode	2.5 6.6 6.6	0.6 1.7 1.4	95.2 905.0 1100.0	648 1065 ND	785 720 340	145 1469 ND	32.8 215.0 ND	0.0 0.0 0.0	0.6 0.6 ND	1.0 3.8 ND	0.1 2.1 ND
Standard Error Median Mode Standard Deviation	2.5 6.6 6.6 7.2	0.6 1.7 1.4 1.6	95.2 905.0 1100.0 269.2	648 1065 ND 1832	785 720 340 2219	145 1469 ND 409	32.8 215.0 ND 92.7	0.0 0.0 0.0 0.0	0.6 0.6 ND 0.8	1.0 3.8 ND 1.3	0.1 2.1 ND 0.1
Standard Error Median Mode Standard Deviation Sample Variance	2.5 6.6 6.6 7.2 51.9	0.6 1.7 1.4 1.6 2.7	95.2 905.0 1100.0 269.2 72455.4	648 1065 ND 1832 3357629	785 720 340 2219 4925964	145 1469 ND 409 167360	32.8 215.0 ND 92.7 8599.6	0.0 0.0 0.0 0.0 0.0	0.6 0.6 ND 0.8 0.7	1.0 3.8 ND 1.3 1.8	0.1 2.1 ND 0.1 0.0
Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	2.5 6.6 6.6 7.2 51.9 5.7	0.6 1.7 1.4 1.6 2.7 4.2	95.2 905.0 1100.0 269.2 72455.4 1.7	648 1065 ND 1832 3357629 2	785 720 340 2219 4925964 4	145 1469 ND 409 167360 1	32.8 215.0 ND 92.7 8599.6 -1.1	0.0 0.0 0.0 0.0 0.0 ND	0.6 0.6 ND 0.8 0.7 ND	1.0 3.8 ND 1.3 1.8 ND	0.1 2.1 ND 0.1 0.0 ND
Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	2.5 6.6 7.2 51.9 5.7 2.3	0.6 1.7 1.4 1.6 2.7 4.2 1.6	95.2 905.0 1100.0 269.2 72455.4 1.7 -1.4	648 1065 ND 1832 3357629 2 1	785 720 340 2219 4925964 4 2	145 1469 ND 409 167360 1 -1	32.8 215.0 ND 92.7 8599.6 -1.1 0.0	0.0 0.0 0.0 0.0 0.0 ND ND	0.6 0.6 ND 0.8 0.7 ND ND	1.0 3.8 ND 1.3 1.8 ND ND	0.1 2.1 ND 0.1 0.0 ND ND
Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	2.5 6.6 7.2 51.9 5.7 2.3 22.2	0.6 1.7 1.4 1.6 2.7 4.2 1.6 5.7	95.2 905.0 1100.0 269.2 72455.4 1.7 -1.4 800.0	648 1065 ND 1832 3357629 2 2 1 5280	785 720 340 2219 4925964 4 2 6450	145 1469 ND 409 167360 1 -1 1273	32.8 215.0 ND 92.7 8599.6 -1.1 0.0 265.0	0.0 0.0 0.0 0.0 0.0 ND ND 0.0	0.6 0.6 ND 0.8 0.7 ND ND 1.2	1.0 3.8 ND 1.3 1.8 ND ND 1.9	0.1 2.1 ND 0.1 0.0 ND ND 0.2
Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	2.5 6.6 7.2 51.9 5.7 2.3 22.2 2.8	0.6 1.7 1.4 1.6 2.7 4.2 1.6 5.7 0.0	95.2 905.0 1100.0 269.2 72455.4 1.7 -1.4 800.0 300.0	648 1065 ND 1832 3357629 2 2 1 5280 120	785 720 340 2219 4925964 4 2 6450 150	145 1469 ND 409 167360 1 -1 1273 518	32.8 215.0 ND 92.7 8599.6 -1.1 0.0 265.0 95.0	0.0 0.0 0.0 0.0 0.0 ND ND 0.0 0.0	0.6 0.6 ND 0.8 0.7 ND ND 1.2 0.0	1.0 3.8 ND 1.3 1.8 ND ND 1.9 2.8	0.1 2.1 ND 0.1 0.0 ND ND 0.2 2.0

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-02, Lilly Road & Marcella Street

					· · · · · · · · · · · · · · · · · · ·						
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	6.5	69.50	31.00	0.6	1.8	0.0	0.0	838.2	2.9	305
Standard Error	0.0	6.5	40.50	20.00	0.6	1.8	0.0	0.0	96.0	0.2	185
Median	0.0	6.5	69.50	31.00	0.6	1.8	0.0	0.0	900.3	3.0	305
Mode	0.0	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	9.2	57.28	28.28	0.8	2.5	0.0	0.0	271.6	0.6	262
Sample Variance	0.0	84.5	3280.50	800.00	0.7	6.5	0.0	0.0	73788.1	0.4	68450
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	1.4	-1.8	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-1.3	-0.1	ND
Range	0.0	13.0	81.00	40.00	1.2	3.6	0.0	0.0	802.8	1.7	370
Minimum	0.0	0.0	29.00	11.00	0.0	0.0	0.0	0.0	293.4	2.1	120
Maximum	0.0	13.0	110.00	51.00	1.2	3.6	0.0	0.0	1096.2	3.7	490
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	82.6	514.60	254.12	7.6	22.9	0.0	0.0	227.1	0.5	2351
		-								_	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
										1	

Summary Statistics	, Underwood Creek Water Qualit	v Data: 2004. Site UC-02. L	IIv Road & Marcella Street

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	5.0	0.7	8.5	ND	10.8	51.3	11.1	243
Standard Error	ND	1.5	0.4	2.1	ND	1.8	10.7	3.5	26
Median	ND	3.0	0.0	7.6	ND	10.7	60.0	8.8	265
Mode	ND	ND	0.0	ND	ND	ND	65.0	ND	280
Standard Deviation	ND	4.4	1.2	5.8	ND	3.5	21.4	6.0	73
Sample Variance	ND	19.1	1.5	34.1	ND	12.4	456.3	36.6	5340
Kurtosis	ND	1.9	0.0	0.6	ND	-1.1	2.9	ND	5
Skewness	ND	1.7	1.4	0.6	ND	0.2	-1.7	1.5	-2
Range	0.0	11.8	2.7	19.0	0.0	8.2	45.0	11.4	233
Minimum	0.0	2.2	0.0	0.0	0.0	6.8	20.0	6.6	77
Maximum	0.0	14.0	2.7	19.0	0.0	15.0	65.0	18.0	310
Count	0	8	8	8	0	4	4	3	8
Confidence Level (95.0%)	ND	3.7	1.0	4.9	ND	5.6	34.0	15.0	61

VARIABLE	РН	TEMP	DO		NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.5	15.2	6.8	0.131	0.025	0.23	1.03	0.170	0.107	ND	7.59
Standard Error	0.1	2.4	1.5	0.060	0.007	0.05	0.12	0.082	0.053	ND	3.42
Median	7.4	14.3	6.4	0.070	0.019	0.25	1.00	0.074	0.056	ND	3.01
Mode	7.4	ND	ND	0.000	ND	ND	1.20	ND	ND	ND	ND
Standard Deviation	0.3	6.4	4.1	0.160	0.019	0.13	0.31	0.216	0.140	ND	9.04
Sample Variance	0.1	41.2	16.7	0.025	0.000	0.02	0.09	0.047	0.020	ND	81.66
Kurtosis	1.1	-0.7	-0.9	0.309	-0.024	-1.84	-0.34	5.232	5.007	ND	0.73
Skewness	1.0	-0.5	0.4	1.042	1.146	-0.05	0.01	2.245	2.176	ND	1.29
Range	0.9	17.4	11.5	0.420	0.049	0.33	0.91	0.609	0.397	0.00	23.86
Minimum	7.1	4.7	1.8	0.000	0.009	0.07	0.59	0.031	0.013	0.00	0.44
Maximum	8.1	22.1	13.3	0.420	0.058	0.40	1.50	0.640	0.410	0.00	24.30
Count	7	7	7	7	7	7	7	7	7	0	7
Confidence Level (95.0%)	0.3	5.9	3.8	0.148	0.017	0.12	0.28	0.200	0.130	ND	8.36
		1/00	TO	55044	5001107	0050		00	07	011	A#
VARIABLE	SS	VSS	TS	FECAL CFU/100	ECOLIQT MPN/100	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	mL	mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
		<u> </u>									
STATISTICS						dirinioo, oini		*		V	
STATISTICS Mean	9.0	3.0	962.9	1391	1267	1555	294.3	0.0	6.3	11.0	3.5
	9.0 2.7		962.9 67.1		1267 376						3.5 0.7
Mean		3.0		1391		1555	294.3	0.0	6.3	11.0	
Mean Standard Error	2.7	3.0 0.7	67.1	1391 618	376	1555 72	294.3 21.1	0.0 0.0	6.3 0.1	11.0 0.0	0.7
Mean Standard Error Median	2.7 5.9	3.0 0.7 3.2	67.1 940.0	1391 618 870	376 1300	1555 72 1477	294.3 21.1 290.0	0.0 0.0 0.0	6.3 0.1 6.3	11.0 0.0 11.0	0.7 3.5
Mean Standard Error Median Mode	2.7 5.9 5.2	3.0 0.7 3.2 ND	67.1 940.0 1200.0	1391 618 870 ND	376 1300 ND	1555 72 1477 ND	294.3 21.1 290.0 250.0	0.0 0.0 0.0 0.0	6.3 0.1 6.3 ND	11.0 0.0 11.0 ND	0.7 3.5 ND
Mean Standard Error Median Mode Standard Deviation	2.7 5.9 5.2 7.1	3.0 0.7 3.2 ND 1.9	67.1 940.0 1200.0 177.6	1391 618 870 ND 1634	376 1300 ND 995	1555 72 1477 ND 191	294.3 21.1 290.0 250.0 55.9	0.0 0.0 0.0 0.0 0.0 0.0	6.3 0.1 6.3 ND 0.1	11.0 0.0 11.0 ND ND	0.7 3.5 ND 1.0
Mean Standard Error Median Mode Standard Deviation Sample Variance	2.7 5.9 5.2 7.1 51.0	3.0 0.7 3.2 ND 1.9 3.7	67.1 940.0 1200.0 177.6 31557.1	1391 618 870 ND 1634 2669481	376 1300 ND 995 990657	1555 72 1477 ND 191 36405	294.3 21.1 290.0 250.0 55.9 3128.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0	6.3 0.1 6.3 ND 0.1 0.0	11.0 0.0 11.0 ND ND ND	0.7 3.5 ND 1.0 1.0
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	2.7 5.9 5.2 7.1 51.0 0.5	3.0 0.7 3.2 ND 1.9 3.7 -0.8	67.1 940.0 1200.0 177.6 31557.1 -1.3	1391 618 870 ND 1634 2669481 6	376 1300 ND 995 990657 0	1555 72 1477 ND 191 36405 0	294.3 21.1 290.0 250.0 55.9 3128.6 -1.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND	6.3 0.1 6.3 ND 0.1 0.0 ND	11.0 0.0 11.0 ND ND ND ND	0.7 3.5 ND 1.0 1.0 ND
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	2.7 5.9 5.2 7.1 51.0 0.5 1.3	3.0 0.7 3.2 ND 1.9 3.7 -0.8 -0.5	67.1 940.0 1200.0 177.6 31557.1 -1.3 0.5	1391 618 870 ND 1634 2669481 6 2	376 1300 ND 995 990657 0 1	1555 72 1477 ND 191 36405 0 1	294.3 21.1 290.0 250.0 55.9 3128.6 -1.2 0.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND	6.3 0.1 6.3 ND 0.1 0.0 ND ND	11.0 0.0 11.0 ND ND ND ND ND ND	0.7 3.5 ND 1.0 1.0 ND ND
MeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewnessRange	2.7 5.9 5.2 7.1 51.0 0.5 1.3 19.6	3.0 0.7 3.2 ND 1.9 3.7 -0.8 -0.5 5.4	67.1 940.0 1200.0 177.6 31557.1 -1.3 0.5 440.0	1391 618 870 ND 1634 2669481 6 2 4820	376 1300 ND 995 990657 0 1 2850	1555 72 1477 ND 191 36405 0 1 528	294.3 21.1 290.0 250.0 55.9 3128.6 -1.2 0.5 150.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND 0.0	6.3 0.1 6.3 ND 0.1 0.0 ND ND 0.2	11.0 0.0 11.0 ND ND ND ND ND ND 0.0	0.7 3.5 ND 1.0 1.0 ND ND 1.4
MeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewnessRangeMinimum	2.7 5.9 5.2 7.1 51.0 0.5 1.3 19.6 2.4	3.0 0.7 3.2 ND 1.9 3.7 -0.8 -0.5 5.4 0.0	67.1 940.0 1200.0 177.6 31557.1 -1.3 0.5 440.0 760.0	1391 618 870 ND 1634 2669481 6 2 4820 180	376 1300 ND 995 990657 0 1 2850 150	1555 72 1477 ND 191 36405 0 1 528 1356	294.3 21.1 290.0 250.0 55.9 3128.6 -1.2 0.5 150.0 230.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND 0.0 0.0	6.3 0.1 6.3 ND 0.1 0.0 ND ND 0.2 6.2	11.0 0.0 11.0 ND ND ND ND ND 0.0 11.0	0.7 3.5 ND 1.0 1.0 ND 1.4 2.8

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-02, Lilly Road & Marcella Street

••••••••••••••••••••••••••••••••••••••						· • • •=, =::					
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	19.1	86.00	35.50	0.4	0.0	0.0	0.0	953.8	2.9	365
Standard Error	0.0	13.9	14.00	7.50	0.4	0.0	0.0	0.0	66.1	0.2	65
Median	0.0	19.1	86.00	35.50	0.4	0.0	0.0	0.0	918.0	2.9	365
Mode	0.0	ND	ND	ND	ND	0.0	ND	0.0	ND	ND	ND
Standard Deviation	0.0	19.7	19.80	10.61	0.6	0.0	ND	0.0	175.0	0.4	92
Sample Variance	0.0	386.4	392.00	112.50	0.3	0.0	ND	0.0	30620.4	0.2	8450
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-1.3	1.6	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	0.6	0.2	ND
Range	0.0	27.8	28.00	15.00	0.8	0.0	0.0	0.0	435.8	1.4	130
Minimum	0.0	5.2	72.00	28.00	0.0	0.0	0.0	0.0	757.6	2.3	300
Maximum	0.0	33.0	100.00	43.00	0.8	0.0	0.0	0.0	1193.4	3.7	430
Count	2	2	2	2	2	2	1	2	7	7	2
Confidence Level (95.0%)	0.0	176.6	177.89	95.30	5.3	0.0	ND	0.0	161.8	0.4	826
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK	1	
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS			U	<u> </u>							
Mean	ND	5.6	2.1	8.4	ND	13.1	59.3	12.2	250		
Standard Error	ND	1.7	0.6	1.5	ND	1.8	5.5	2.0	24		
Median	ND	3.1	2.5	7.6	ND	14.5	63.0	13.0	280		
Mode	ND	ND	0.0	ND	ND	ND	63.0	ND	280		
Standard Deviation	ND	4.4	1.6	3.9	ND	4.5	13.4	5.0	63		
Sample Variance	ND	19.2	2.5	15.2	ND	19.9	179.9	24.7	3967		

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-02, Lilly Road & Marcella Street

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	5.6	2.1	8.4	ND	13.1	59.3	12.2	250
Standard Error	ND	1.7	0.6	1.5	ND	1.8	5.5	2.0	24
Median	ND	3.1	2.5	7.6	ND	14.5	63.0	13.0	280
Mode	ND	ND	0.0	ND	ND	ND	63.0	ND	280
Standard Deviation	ND	4.4	1.6	3.9	ND	4.5	13.4	5.0	63
Sample Variance	ND	19.2	2.5	15.2	ND	19.9	179.9	24.7	3967
Kurtosis	ND	-1.0	-0.8	2.0	ND	-0.5	0.6	-1.8	-1
Skewness	ND	1.0	-0.5	1.4	ND	-0.8	-0.9	-0.3	-1
Range	0.0	10.5	4.2	11.5	0.0	11.9	38.0	12.5	160
Minimum	0.0	2.0	0.0	4.5	0.0	6.1	37.0	5.5	150
Maximum	0.0	12.5	4.2	16.0	0.0	18.0	75.0	18.0	310
Count	0	7	7	7	0	6	6	6	7
Confidence Level (95.0%)	ND	4.0	1.5	3.6	ND	4.7	14.1	5.2	58

VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.5	14.3	9.7	0.096	0.018	0.29	0.72	0.045	0.017	ND	3.95
Standard Error	0.1	1.0	0.6	0.016	0.007	0.12	0.15	0.010	0.005	ND	2.15
Median	7.5	15.4	9.4	0.082	0.015	0.13	0.58	0.046	0.017	ND	1.53
Mode	7.8	15.6	ND	ND	0.000	ND	ND	ND	0.000	ND	ND
Standard Deviation	0.2	2.9	1.6	0.044	0.021	0.35	0.42	0.027	0.014	ND	6.08
Sample Variance	0.1	8.3	2.5	0.002	0.000	0.12	0.18	0.001	0.000	ND	36.93
Kurtosis	-1.3	0.0	-0.9	2.752	2.771	4.89	-0.63	-1.238	-1.863	ND	6.45
Skewness	0.0	-1.0	0.2	1.680	1.548	2.15	0.92	0.268	-0.248	ND	2.51
Range	0.6	8.5	4.6	0.137	0.063	1.03	1.13	0.074	0.033	0.00	17.74
Minimum	7.2	9.4	7.4	0.053	0.000	0.07	0.27	0.013	0.000	0.00	0.76
Maximum	7.8	17.9	12.0	0.190	0.063	1.10	1.40	0.087	0.033	0.00	18.50
Count	8	8	8	8	8	8	8	8	7	0	8
Confidence Level (95.0%)	0.2	2.4	1.3	0.037	0.018	0.29	0.35	0.023	0.013	ND	5.08
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	6.7	1.0	1025.0	1808	3764	1624	258.8	0.0	0.0	2.5	2.7
Standard Error	1.6	0.4	96.7	1459	3321	147	23.6	0.0	0.0	1.0	1.0
Median	5.2	0.5	995.0	310	430	1655	260.0	0.0	0.0	2.5	2.7
Mode											
	ND	0.0	1200.0	ND	ND	ND	ND	0.0	0.0	ND	ND
Standard Deviation	ND 4.6	0.0 1.2	1200.0 273.5	ND 4127	ND 9394	ND 416	ND 66.6	0.0	0.0	ND 1.4	ND 1.3
Standard Deviation Sample Variance											
	4.6	1.2	273.5	4127	9394	416	66.6	0.0	0.0	1.4	1.3
Sample Variance	4.6 21.3	1.2 1.5	273.5 74800.0	4127 17034536	9394 88250570	416 172980	66.6 4441.1	0.0 0.0	0.0 0.0	1.4 2.0	1.3 1.8
Sample Variance Kurtosis	4.6 21.3 3.9	1.2 1.5 -0.2	273.5 74800.0 0.2	4127 17034536 8	9394 88250570 8	416 172980 -1	66.6 4441.1 -1.0	0.0 0.0 ND	0.0 0.0 ND	1.4 2.0 ND	1.3 1.8 ND
Sample Variance Kurtosis Skewness	4.6 21.3 3.9 1.9	1.2 1.5 -0.2 1.0	273.5 74800.0 0.2 0.3	4127 17034536 8 3	9394 88250570 8 3	416 172980 -1 0	66.6 4441.1 -1.0 0.0	0.0 0.0 ND ND	0.0 0.0 ND ND	1.4 2.0 ND ND	1.3 1.8 ND ND
Sample Variance Kurtosis Skewness Range	4.6 21.3 3.9 1.9 14.4	1.2 1.5 -0.2 1.0 3.2	273.5 74800.0 0.2 0.3 880.0	4127 17034536 8 3 11890	9394 88250570 8 3 26880	416 172980 -1 0 1206	66.6 4441.1 -1.0 0.0 200.0	0.0 0.0 ND ND 0.0	0.0 0.0 ND ND 0.0	1.4 2.0 ND ND 2.0	1.3 1.8 ND ND 1.9
Sample Variance Kurtosis Skewness Range Minimum	4.6 21.3 3.9 1.9 14.4 2.6	1.2 1.5 -0.2 1.0 3.2 0.0	273.5 74800.0 0.2 0.3 880.0 620.0	4127 17034536 8 3 11890 110	9394 88250570 8 3 26880 120	416 172980 -1 0 1206 973	66.6 4441.1 -1.0 0.0 200.0 160.0	0.0 0.0 ND ND 0.0 0.0	0.0 0.0 ND ND 0.0 0.0	1.4 2.0 ND 2.0 1.5	1.3 1.8 ND ND 1.9 1.7

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-03, 124th & Bluemound Road

VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
			·····	100 -: /l		1.00.11			100 C: //	CFU/100	100 - · //
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	mL	mg/L
STATISTICS											
Mean	2.8	23.5	104.50	42.00	0.0	5.5	0.0	0.0	1018.3	2.6	430
Standard Error	2.8	3.5	15.50	6.00	0.0	5.5	0.0	0.0	97.9	0.2	60
Median	2.8	23.5	104.50	42.00	0.0	5.5	0.0	0.0	990.9	2.5	430
Mode	ND	ND	ND	ND	0.0	ND	0.0	0.0	ND	ND	ND
Standard Deviation	3.9	4.9	21.92	8.49	0.0	7.8	0.0	0.0	277.0	0.7	85
Sample Variance	15.1	24.5	480.50	72.00	0.0	60.5	0.0	0.0	76746.6	0.4	7200
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	0.2	3.4	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	0.3	1.8	ND
Range	5.5	7.0	31.00	12.00	0.0	11.0	0.0	0.0	893.0	2.0	120
Minimum	0.0	20.0	89.00	36.00	0.0	0.0	0.0	0.0	603.0	2.0	370
Maximum	5.5	27.0	120.00	48.00	0.0	11.0	0.0	0.0	1496.0	4.1	490
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	34.9	44.5	196.95	76.24	0.0	69.9	0.0	0.0	231.6	0.5	762
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units i	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS											
STATISTICS											
Mean	ND	9.2	1.1	7.1	ND	6.4	64.8	5.7	298		
	ND ND	9.2 0.9	1.1 0.5	7.1	ND ND	6.4 1.3	64.8 6.7	5.7 1.2	298 31		
Mean											
Mean Standard Error	ND	0.9	0.5	0.4	ND	1.3	6.7	1.2	31	- - -	
Mean Standard Error Median	ND ND	0.9 8.5	0.5 0.0	0.4 6.9	ND ND	1.3 5.6	6.7 68.5	1.2 4.6	31 345		
Mean Standard Error Median Mode	ND ND ND	0.9 8.5 ND	0.5 0.0 0.0	0.4 6.9 7.1	ND ND ND	1.3 5.6 ND	6.7 68.5 80.0	1.2 4.6 ND	31 345 370		
MeanStandard ErrorMedianModeStandard Deviation	ND ND ND ND	0.9 8.5 ND 2.6	0.5 0.0 0.0 1.5	0.4 6.9 7.1 1.3	ND ND ND ND	1.3 5.6 ND 3.7	6.7 68.5 80.0 18.9	1.2 4.6 ND 3.4	31 345 370 89		
MeanStandard ErrorMedianModeStandard DeviationSample Variance	ND ND ND ND ND	0.9 8.5 ND 2.6 7.0	0.5 0.0 0.0 1.5 2.1	0.4 6.9 7.1 1.3 1.6	ND ND ND ND ND	1.3 5.6 ND 3.7 13.5	6.7 68.5 80.0 18.9 356.5	1.2 4.6 ND 3.4 11.3	31 345 370 89 7879		
MeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosis	ND ND ND ND ND ND	0.9 8.5 ND 2.6 7.0 0.6	0.5 0.0 0.0 1.5 2.1 -2.2	0.4 6.9 7.1 1.3 1.6 4.5	ND ND ND ND ND ND	1.3 5.6 ND 3.7 13.5 2.1	6.7 68.5 80.0 18.9 356.5 -0.3	1.2 4.6 ND 3.4 11.3 3.2	31 345 370 89 7879 -1		
MeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewness	ND ND ND ND ND ND ND	0.9 8.5 ND 2.6 7.0 0.6 1.1	0.5 0.0 1.5 2.1 -2.2 0.6	0.4 6.9 7.1 1.3 1.6 4.5 1.9	ND ND ND ND ND ND ND	1.3 5.6 ND 3.7 13.5 2.1 1.5	6.7 68.5 80.0 18.9 356.5 -0.3 -0.7	1.2 4.6 ND 3.4 11.3 3.2 1.7	31 345 370 89 7879 -1 -1		
MeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewnessRange	ND ND ND ND ND ND ND 0.0	0.9 8.5 ND 2.6 7.0 0.6 1.1 7.9	0.5 0.0 1.5 2.1 -2.2 0.6 2.9	0.4 6.9 7.1 1.3 1.6 4.5 1.9 4.1	ND ND ND ND ND ND ND 0.0	1.3 5.6 ND 3.7 13.5 2.1 1.5 11.1	6.7 68.5 80.0 18.9 356.5 -0.3 -0.7 56.0	1.2 4.6 ND 3.4 11.3 3.2 1.7 10.3	31 345 370 89 7879 -1 -1 -1 230		
MeanStandard ErrorMedianModeStandard DeviationSample VarianceKurtosisSkewnessRangeMinimum	ND ND ND ND ND ND 0.0 0.0	0.9 8.5 ND 2.6 7.0 0.6 1.1 7.9 6.4	0.5 0.0 1.5 2.1 -2.2 0.6 2.9 0.0	0.4 6.9 7.1 1.3 1.6 4.5 1.9 4.1 5.9	ND ND ND ND ND ND ND 0.0 0.0	1.3 5.6 ND 3.7 13.5 2.1 1.5 11.1 2.9	6.7 68.5 80.0 18.9 356.5 -0.3 -0.7 56.0 31.0	1.2 4.6 ND 3.4 11.3 3.2 1.7 10.3 2.7	31 345 370 89 7879 -1 -1 230 140		

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-03, 124th & Bluemound Road

VARIABLE PH TEMP DO AMMONIA NITRITE NITRATE TKAT PHOS SOLPHOS SOLSIL CH units su C mg/L	Suillia	y otatisti		10000 010	er water Quality	Dulu. 2004		$0, 12\mathbf{+}$				r
STATISTICS Image Image <thimage< th=""> Image Image</thimage<>	VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
Mean 7.5 13.4 10.7 0.073 0.010 0.66 1.24 0.308 0.017 ND 4.67 Standard Error 0.1 1.9 0.9 0.026 0.004 0.37 0.30 0.266 0.009 ND 1.53 Median 7.4 13.6 10.5 0.053 0.007 0.29 1.05 0.041 0.000 ND ND ND Second ND A.32 Sample Variance 0.1 2.7.6 6.3 0.006 0.000 1.1 0.71 0.448 0.73 0.22 ND 0.17 Skerness 0.5 -0.5 0.3 1.929 0.688 2.57 1.79 2.627 0.984 ND 0.90 0.001 0.11 Minimum 7.0 4.5 7.2 0.007 0.000 0.07 0.56 0.000	units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
Standard Error 0.1 1.9 0.9 0.026 0.004 0.37 0.30 0.266 0.009 ND ND Median 7.4 13.6 10.5 0.053 0.007 0.29 1.05 0.041 0.000 ND ND Standard Deviation 0.4 5.3 2.5 0.074 0.012 1.05 0.84 0.003 0.023 ND 4.32 Sample Variance 0.1 27.6 6.3 0.006 0.001 1.11 0.71 0.494 0.001 ND ND 1.05 8.4 0.703 0.023 ND 1.73 Skewness 0.5 -0.5 0.3 1.929 0.688 2.57 1.79 2.627 0.984 ND 0.89 Range 1.1 14.6 7.2 0.031 3.13 2.54 1.900 0.053 0.001 1.280 Count 8 8 8 8 8 8 7 7 0 </th <th>STATISTICS</th> <th></th>	STATISTICS											
Median 7.4 13.6 10.5 0.053 0.007 0.29 1.05 0.041 0.000 ND 3.96 Mode ND ND ND ND 0.007 1.30 ND 0.000 ND ND Standard Deviation 0.4 5.3 2.5 0.074 0.012 1.05 0.84 0.703 0.023 ND 4.32 Sample Variance 0.1 27.6 6.3 0.006 0.000 1.11 0.71 0.444 0.001 ND 18.65 Kurtosis -0.5 0.3 1.229 0.688 2.57 1.79 2.627 0.984 ND 0.698 Range 1.1 14.6 7.2 0.207 0.001 0.77 0.56 0.000 0.000 0.001 12.80 Maximum 8.1 19.1 14.4 0.240 0.031 3.20 3.10 19.00 0.053 0.002 12.80 Confidence Level (95.0%) 0.3	Mean	7.5	13.4	10.7	0.073	0.010	0.66	1.24	0.308	0.017	ND	4.67
Mode ND ND ND ND ND ND ND 0.000 0.07 1.30 ND 0.000 ND ND Standard Deviation 0.4 5.3 2.5 0.074 0.012 1.05 0.84 0.703 0.023 ND 4.32 Sample Variance 0.1 2.76 6.3 0.006 0.000 1.11 0.71 0.494 0.001 ND 18.65 Kurtosis -0.5 -0.8 -0.9 4.327 -0.917 6.67 3.55 6.921 -1.092 ND 0.17 Skewness 0.5 -0.5 0.3 1.929 0.688 2.57 1.79 2.627 0.984 ND 0.299 Range 1.1 14.4 0.240 0.31 3.20 3.10 1.900 0.053 0.000 12.80 Contidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.8 0.70 0.650 0.022 ND	Standard Error	0.1	1.9	0.9	0.026	0.004	0.37	0.30	0.266	0.009	ND	1.53
Standard Deviation 0.4 5.3 2.5 0.074 0.012 1.05 0.84 0.703 0.023 ND 4.32 Sample Variance 0.1 27.6 6.3 0.006 0.000 1.11 0.71 0.494 0.001 ND 18.65 Kurtosis -0.5 -0.5 0.3 1.929 0.688 2.57 1.79 2.627 0.944 ND 0.69 Range 1.1 14.6 7.2 0.023 0.031 3.13 2.54 1.900 0.053 0.00 1.239 Minimum 7.0 4.5 7.2 0.007 0.00 0.70 0.56 0.00 0.001 0.41 Maximum 8.1 19.1 14.4 0.240 0.031 3.20 3.10 1.900 0.053 0.00 1.239 Count 8 8 8 8 8 8 7 7 0 8 Confidence Level (95.0%) 0.3 4.4	Median	7.4	13.6	10.5	0.053	0.007	0.29	1.05	0.041	0.000	ND	3.96
Sample Variance 0.1 27.6 6.3 0.006 0.000 1.11 0.71 0.494 0.001 ND 18.65 Kurtosis -0.5 -0.8 -0.9 4.327 -0.917 6.87 3.55 6.921 -1.092 ND 0.17 Skewness 0.5 -0.5 0.3 1.329 0.688 2.57 1.79 2.627 0.984 ND 0.83 Range 1.1 14.6 7.2 0.031 3.13 2.54 1.900 0.653 0.00 12.39 Minimum 8.1 19.1 14.4 0.240 0.031 3.20 3.10 1.900 0.653 0.00 12.89 Count 8 8 8 8 8 8 7 7 0 8 Count 8 Y Y 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE S VSS TS F	Mode	ND	ND	ND	ND	0.000	0.07	1.30	ND	0.000	ND	ND
Kurtosis -0.5 -0.8 -0.9 4.327 -0.917 6.87 3.55 6.921 -1.092 ND 0.17 Skewness 0.5 -0.5 0.3 1.929 0.688 2.57 1.79 2.627 0.984 ND 0.89 Range 1.1 14.6 7.2 0.233 0.031 3.13 2.54 1.900 0.000 0.001 1.230 Maximum 7.0 4.5 7.2 0.007 0.000 0.07 0.560 0.000 0.001 1.280 Count 8 8 8 8 8 8 7 7 0 8 Confidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU NI Main mg/L mg/L mg/L	Standard Deviation	0.4	5.3	2.5	0.074	0.012	1.05	0.84	0.703	0.023	ND	4.32
Skewness 0.5 -0.5 0.3 1.929 0.688 2.57 1.79 2.627 0.984 ND 0.89 Range 1.1 14.6 7.2 0.233 0.031 3.13 2.54 1.900 0.053 0.00 12.39 Minimum 7.0 4.5 7.2 0.007 0.000 0.07 0.56 0.00 0.000 0.001 1.300 0.053 0.00 12.39 Maximum 8.1 19.11 14.4 0.240 0.031 3.20 3.10 1.900 0.053 0.00 12.80 Count 8 8 8 8 8 8 7 7 0 8 Count 8 8 8 8 8 8 7 7 0 8 Maximum 9.03 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS <th>Sample Variance</th> <td>0.1</td> <td>27.6</td> <td>6.3</td> <td>0.006</td> <td>0.000</td> <td>1.11</td> <td>0.71</td> <td>0.494</td> <td>0.001</td> <td>ND</td> <td>18.65</td>	Sample Variance	0.1	27.6	6.3	0.006	0.000	1.11	0.71	0.494	0.001	ND	18.65
Range 1.1 14.6 7.2 0.233 0.031 3.13 2.54 1.900 0.053 0.00 12.39 Minimum 7.0 4.5 7.2 0.007 0.000 0.07 0.56 0.000 0.000 0.41 Maximum 8.1 19.1 14.4 0.240 0.031 3.20 3.10 1.900 0.053 0.00 12.80 Count 8 8 8 8 8 8 7 7 0 8 Confidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU MI Minits mg/L mg/L mg/L CFU/100 mL MP/N100 mL Mm/N100 mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L <th< th=""><th>Kurtosis</th><td>-0.5</td><td>-0.8</td><td>-0.9</td><td>4.327</td><td>-0.917</td><td>6.87</td><td>3.55</td><td>6.921</td><td>-1.092</td><td>ND</td><td>0.17</td></th<>	Kurtosis	-0.5	-0.8	-0.9	4.327	-0.917	6.87	3.55	6.921	-1.092	ND	0.17
Minimum 7.0 4.5 7.2 0.007 0.000 0.07 0.56 0.000 0.000 0.01 Maximum 8.1 19.1 14.4 0.240 0.031 3.20 3.10 1.900 0.053 0.00 12.80 Count 8 8 8 8 8 8 7 7 0 8 Confidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU NI Main mg/L mg/L mg/L CFU/100 mL MPN/100 mL umhos/cm mg/L ug/L u	Skewness	0.5	-0.5	0.3	1.929	0.688	2.57	1.79	2.627	0.984	ND	0.89
Maximum 8.1 19.1 14.4 0.240 0.031 3.20 3.10 1.900 0.053 0.00 12.80 Count 8 8 8 8 8 8 8 8 7 7 0 8 Confidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU NI units mg/L mg/L mg/L mg/L CFU/100 mL MPN/100 MPN/100 mL umhs/mg/L ug/L ug/L <t< th=""><th>Range</th><td>1.1</td><td>14.6</td><td>7.2</td><td>0.233</td><td>0.031</td><td>3.13</td><td>2.54</td><td>1.900</td><td>0.053</td><td>0.00</td><td>12.39</td></t<>	Range	1.1	14.6	7.2	0.233	0.031	3.13	2.54	1.900	0.053	0.00	12.39
Count 8 8 8 8 8 8 8 7 7 0 8 Confidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU NI units mg/L mg/L mg/L CFU/100 mL MPN/100 mL umhos/cm mg/L ug/L ug/L <th>Minimum</th> <td>7.0</td> <td>4.5</td> <td>7.2</td> <td>0.007</td> <td>0.000</td> <td>0.07</td> <td>0.56</td> <td>0.000</td> <td>0.000</td> <td>0.00</td> <td>0.41</td>	Minimum	7.0	4.5	7.2	0.007	0.000	0.07	0.56	0.000	0.000	0.00	0.41
Confidence Level (95.0%) 0.3 4.4 2.1 0.062 0.010 0.88 0.70 0.650 0.022 ND 3.61 VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU NI units mg/L mg/L mg/L CFU/100 mL MPN/100 mL umhos/cm mg/L ug/L	Maximum	8.1	19.1	14.4	0.240	0.031	3.20	3.10	1.900	0.053	0.00	12.80
VARIABLE SS VSS TS FECAL ECOLIQT SPEC CHLOR CD CR CU NI units mg/L mg/L mg/L CFU/100 mL MPN/100 mL umhos/cm mg/L ug/L	Count	8	8	8	8	8	8	8	7	7	0	8
unitsmg/Lmg/Lmg/Lmg/LCFU/100 mLMPN/100 mLumhos/cmmg/Lug/L <th>Confidence Level (95.0%)</th> <td>0.3</td> <td>4.4</td> <td>2.1</td> <td>0.062</td> <td>0.010</td> <td>0.88</td> <td>0.70</td> <td>0.650</td> <td>0.022</td> <td>ND</td> <td>3.61</td>	Confidence Level (95.0%)	0.3	4.4	2.1	0.062	0.010	0.88	0.70	0.650	0.022	ND	3.61
unitsmg/Lmg/Lmg/Lmg/LCFU/100 mLMPN/100 mLumhos/cmmg/Lug/L <th></th>												
unitsmg/Lmg/Lmg/Lmg/LCFU/100 mLmLumhos/cmmg/Lug/L </th <th>VARIABLE</th> <th>SS</th> <th>VSS</th> <th>TS</th> <th>FECAL</th> <th></th> <th>SPEC</th> <th>CHLOR</th> <th>CD</th> <th>CR</th> <th>CU</th> <th>NI</th>	VARIABLE	SS	VSS	TS	FECAL		SPEC	CHLOR	CD	CR	CU	NI
Mean128.021.81148.8188713001559258.80.00.03.73.5Standard Error119.019.8150.899267521829.60.00.00.00.90.8Median3.41.71150.08304501741275.00.00.00.03.73.5Mode3.20.01100.0NDNDNDND0.00.00.0NDNDStandard Deviation336.555.9426.52807190961783.70.00.01.31.1Sample Variance113211.23126.2181926.8787763136441113801587012.50.00.01.61.3Kurtosis8.07.90.44320.3NDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count8888888822222	units	mg/L	mg/L	mg/L	CFU/100 mL		umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
Standard Error119.019.8150.899267521829.60.00.00.00.90.8Median3.41.71150.08304501741275.00.00.03.73.5Mode3.20.01100.0NDNDNDND0.00.00.0NDNDStandard Deviation336.555.9426.52807190961783.70.00.01.31.1Sample Variance113211.23126.2181926.8787763136441113801587012.50.00.01.61.3Kurtosis8.07.90.44320.3NDNDNDNDSkewness2.82.80.222-1-0.5NDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.0190.0820055002292380.00.00.04.64.3Count88888888222222	STATISTICS											
Median3.41.71150.08304501741275.00.00.03.73.5Mode3.20.01100.0NDNDNDNDND0.00.0NDNDStandard Deviation336.555.9426.52807190961783.70.00.01.31.1Sample Variance113211.23126.2181926.8787763136441113801587012.50.00.01.61.3Kurtosis8.07.90.44320.3NDNDNDNDSkewness2.82.80.222-1-0.5NDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count8888888822222	Mean	128.0	21.8	1148.8	1887	1300	1559	258.8	0.0	0.0	3.7	3.5
Mode3.20.01100.0NDNDNDNDND0.00.0NDNDNDStandard Deviation336.555.9426.52807190961783.70.00.01.31.1Sample Variance113211.23126.2181926.8787763136441113801587012.50.00.01.61.3Kurtosis8.07.90.44320.3NDNDNDNDSkewness2.82.80.222-1-0.5NDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count8888888822222	Standard Error	119.0	19.8	150.8	992	675	218	29.6	0.0	0.0	0.9	0.8
Standard Deviation336.555.9426.52807190961783.70.00.01.31.1Sample Variance113211.23126.2181926.8787763136441113801587012.50.00.01.61.3Kurtosis8.07.90.44320.3NDNDNDNDSkewness2.82.80.222-1-0.5NDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count888888822222	Median	3.4	1.7	1150.0	830	450	1741	275.0	0.0	0.0	3.7	3.5
Sample Variance113211.23126.2181926.8787763136441113801587012.50.00.01.61.3Kurtosis8.07.90.44320.3NDNDNDNDSkewness2.82.80.222-1-0.5NDNDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count88888882222	Mode	3.2	0.0	1100.0	ND	ND	ND	ND	0.0	0.0	ND	ND
Kurtosis8.07.90.44320.3NDNDNDNDNDSkewness2.82.80.222-1-0.5NDNDNDNDNDRange957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count88888882222	Standard Deviation	336.5	55.9	426.5	2807	1909	617	83.7	0.0	0.0	1.3	1.1
Skewness 2.8 2.8 0.2 2 2 -1 -0.5 ND ND ND ND ND Range 957.2 160.0 1340.0 8172 5443 2011 270.0 0.0 0.0 1.8 1.6 Minimum 2.8 0.0 560.0 28 57 281 110.0 0.0 0.0 2.8 2.7 Maximum 960.0 160.0 1900.0 8200 5500 2292 380.0 0.0 0.0 4.6 4.3 Count 8 8 8 8 8 8 8 2 2 2 2	Sample Variance	113211.2	3126.2	181926.8	7877631	3644111	380158	7012.5	0.0	0.0	1.6	1.3
Range957.2160.01340.0817254432011270.00.00.01.81.6Minimum2.80.0560.02857281110.00.00.02.82.7Maximum960.0160.01900.0820055002292380.00.00.04.64.3Count88888882222	Kurtosis	8.0	7.9	0.4	4	3	2	0.3	ND	ND	ND	ND
Minimum 2.8 0.0 560.0 28 57 281 110.0 0.0 0.0 2.8 2.7 Maximum 960.0 160.0 1900.0 8200 5500 2292 380.0 0.0 0.0 4.6 4.3 Count 8 8 8 8 8 8 2 2 2 2	Skewness	2.8	2.8	0.2	2	2	-1	-0.5	ND	ND	ND	ND
Maximum 960.0 160.0 1900.0 8200 5500 2292 380.0 0.0 0.0 4.6 4.3 Count 8 8 8 8 8 8 2 2 2 2	Range	957.2	160.0	1340.0	8172	5443	2011	270.0	0.0	0.0	1.8	1.6
Count 8 8 8 8 8 8 8 2 <th>Minimum</th> <td>2.8</td> <td>0.0</td> <td>560.0</td> <td>28</td> <td>57</td> <td>281</td> <td>110.0</td> <td>0.0</td> <td>0.0</td> <td>2.8</td> <td>2.7</td>	Minimum	2.8	0.0	560.0	28	57	281	110.0	0.0	0.0	2.8	2.7
	Maximum	960.0	160.0	1900.0	8200	5500	2292	380.0	0.0	0.0	4.6	4.3
Confidence Level (95.0%) 281.3 46.7 356.6 2346 1596 515 70.0 0.0 0.0 11.4 10.2	Count	8	8	8	8	8	8	8	2	2	2	2
	Confidence Level (95.0%)	281.3	46.7	356.6	2346	1596	515	70.0	0.0	0.0	11.4	10.2

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-03, 124th & Bluemound Road

Summary Statistics, O				ity Data. 2004, Sh			inounu r				
VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS				··· <i>3</i> / –							
Mean	0.0	13.8	108.50	46.50	1.0	2.7	0.0	0.0	1020.8	2.7	465
Standard Error	0.0	8.3	41.50	19.50	0.5	2.7	0.0	0.0	109.7	0.3	185
Median	0.0	13.8	108.50	46.50	1.0	2.7	0.0	0.0	1096.9	2.9	465
Mode	0.0	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	11.7	58.69	27.58	0.6	3.8	0.0	0.0	310.4	0.9	262
Sample Variance	0.0	136.1	3444.50	760.50	0.4	14.6	0.0	0.0	96320.6	0.8	68450
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.7	-1.1	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.7	-0.2	ND
Range	0.0	16.5	83.00	39.00	0.9	5.4	0.0	0.0	878.0	2.5	370
Minimum	0.0	5.5	67.00	27.00	0.6	0.0	0.0	0.0	517.0	1.4	280
Maximum	0.0	22.0	150.00	66.00	1.5	5.4	0.0	0.0	1395.0	3.9	650
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	104.8	527.31	247.77	5.8	34.3	0.0	0.0	259.5	0.7	2351
r		r								1	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS											
Mean	ND	263.1	1.5	7.0	ND	9.1	63.8	9.3	283		
Standard Error	ND	255.3	0.8	2.1	ND	1.3	5.4	1.5	24		
Median	ND	4.7	0.0	6.0	ND	10.9	66.0	9.4	290		
Mode	ND	ND	0.0	0.0	ND	12.0	ND	ND	290		
Standard Deviation	ND	722.1	2.1	6.1	ND	3.8	15.2	4.3	68		
Sample Variance	ND	521399.0	4.6	36.6	ND	14.2	230.5	18.5	4564		
Kurtosis	ND	8.0	-1.5	-0.7	ND	-1.7	-1.3	0.4	0		
Skewness	ND	2.8	0.8	0.4	ND	-0.6	-0.2	0.5	0		
ORCWIIC33	ND						I				
Range	0.0	2047.8	4.7	17.0	0.0	9.6	43.0	13.9	200		
				17.0 0.0	0.0	9.6 3.4	43.0 42.0	13.9 3.1	200 180		
Range	0.0	2047.8	4.7								
Range Minimum	0.0 0.0	2047.8 2.2	4.7 0.0	0.0	0.0	3.4	42.0	3.1	180		

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-03, 124th & Bluemound Road

Gammary	y otatist	r ,						1	r I		1
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.4	14.0	10.0	0.050	0.024	0.17	0.70	0.040	0.023	ND	6.90
Standard Error	0.1	1.3	0.6	0.017	0.007	0.03	0.10	0.012	0.006	ND	4.78
Median	7.3	14.2	9.6	0.037	0.017	0.20	0.75	0.028	0.017	ND	1.16
Mode	ND	ND	ND	ND	0.013	0.24	ND	ND	0.015	ND	ND
Standard Deviation	0.4	3.6	1.8	0.049	0.020	0.09	0.28	0.034	0.016	ND	13.52
Sample Variance	0.2	12.9	3.1	0.002	0.000	0.01	0.08	0.001	0.000	ND	182.91
Kurtosis	-0.7	2.6	-1.4	-0.079	5.762	-1.82	-0.91	1.857	5.063	ND	6.89
Skewness	0.6	-0.5	0.3	0.942	2.300	-0.34	-0.19	1.611	2.176	ND	2.60
Range	1.1	13.0	4.9	0.140	0.064	0.23	0.83	0.095	0.050	0.00	39.16
Minimum	6.9	7.0	7.8	0.000	0.007	0.05	0.27	0.015	0.011	0.00	0.44
Maximum	8.0	20.0	12.7	0.140	0.071	0.28	1.10	0.110	0.061	0.00	39.60
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.3	3.0	1.5	0.041	0.017	0.08	0.24	0.028	0.014	ND	11.31
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	4.9	1.6	1246.3	1120	1053	1913	302.5	0.0	5.8	4.8	4.5
Standard Error	1.5	0.7	78.1	747	648	88	13.9	0.0	0.2	0.0	0.8
Median	3.8	1.0	1250.0	265	245	1940	305.0	0.0	5.8	4.8	4.5
Mode	4.4	0.0	1500.0	ND	ND	ND	310.0	0.0	ND	ND	ND
Standard Deviation	4.2	2.0	221.0	2112	1834	248	39.2	0.0	0.3	ND	1.2
Sample Variance	17.3	3.9	48826.8	4462166	3363047	61615	1535.7	0.0	0.1	ND	1.4
Kurtosis	7.1	0.5	-0.6	7	5	-1	2.6	ND	ND	ND	ND
Skewness	2.6	1.0	-0.4	3	2	0	0.7	ND	ND	ND	ND
Range	12.6	5.4	630.0	6138	5288	732	140.0	0.0	0.4	0.0	1.7
Minimum	2.4	0.0	870.0	62	12	1524	240.0	0.0	5.6	4.8	3.6
Maximum	15.0	5.4	1500.0	6200	5300	2256	380.0	0.0	6.0	4.8	5.3
Count	8	8	8	8	8	8	8	2	2	1	2
	4										

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-03, 124th & Bluemound Road

1533

208

32.8

0.0

2.5

ND

10.8

1.7

184.7

1766

3.5

Confidence Level (95.0%)

						0-03, 124					
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	12.0	140.00	58.50	0.8	0.0	0.0	0.0	1241.4	2.5	595
Standard Error	0.0	2.0	20.00	9.50	0.1	0.0	0.0	0.0	77.5	0.2	95
Median	0.0	12.0	140.00	58.50	0.8	0.0	0.0	0.0	1245.6	2.4	595
Mode	0.0	ND	ND	ND	ND	0.0	ND	0.0	ND	ND	ND
Standard Deviation	0.0	2.8	28.28	13.44	0.2	0.0	ND	0.0	219.1	0.7	134
Sample Variance	0.0	8.0	800.00	180.50	0.0	0.0	ND	0.0	48005.5	0.4	18050
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.6	0.8	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.4	1.1	ND
Range	0.0	4.0	40.00	19.00	0.3	0.0	0.0	0.0	629.6	2.0	190
Minimum	0.0	10.0	120.00	49.00	0.7	0.0	0.0	0.0	867.6	1.8	500
Maximum	0.0	14.0	160.00	68.00	0.9	0.0	0.0	0.0	1497.2	3.8	690
Count	2	2	2	2	2	2	1	2	8	8	2
Confidence Level (95.0%)	0.0	25.4	254.12	120.71	1.6	0.0	ND	0.0	183.2	0.5	1207
										1	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK]	
							TNIC mg/L	TNDOC mg/L			
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC			TALK		
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC			TALK		
VARIABLE units STATISTICS	SCHII meters	TURB NTU	BOD5 mg/L	BOD20 mg/L	IXLITE meters	TNOC mg/L	mg/L	mg/L	TALK mg/L		
VARIABLE units STATISTICS Mean	SCHII meters ND	TURB NTU 7.8	BOD5 mg/L 1.4	BOD20 mg/L 4.9	IXLITE meters ND	TNOC mg/L 8.5	mg/L 68.4	<i>mg/L</i> 7.9	TALK mg/L 328		
VARIABLE units STATISTICS Mean Standard Error	SCHII meters ND ND	TURB NTU 7.8 2.4	BOD5 mg/L 1.4 0.6	BOD20 mg/L 4.9 1.2	IXLITE meters ND ND	TNOC mg/L 8.5 2.2	mg/L 68.4 9.8	<i>mg/L</i> 7.9 2.0	TALK mg/L 328 21		
VARIABLE units STATISTICS Mean Standard Error Median	SCHII meters ND ND ND	TURB NTU 7.8 2.4 5.0	BOD5 mg/L 1.4 0.6 1.1	BOD20 mg/L 4.9 1.2 5.6	IXLITE meters ND ND ND	TNOC mg/L 8.5 2.2 7.9	mg/L 68.4 9.8 78.0	<i>mg/L</i> 7.9 2.0 6.5	TALK mg/L 328 21 335		
VARIABLE units STATISTICS Mean Standard Error Median Mode	SCHII meters ND ND ND ND	TURB NTU 7.8 2.4 5.0 ND	BOD5 mg/L 1.4 0.6 1.1 0.0	BOD20 mg/L 4.9 1.2 5.6 0.0	IXLITE meters ND ND ND ND ND	TNOC mg/L 8.5 2.2 7.9 15.0	mg/L 68.4 9.8 78.0 ND	<u>mg/L</u> 7.9 2.0 6.5 14.0	TALK mg/L 328 21 335 390		
VARIABLE units STATISTICS Mean Standard Error Median Mode Standard Deviation	SCHII meters ND ND ND ND ND	TURB NTU 7.8 2.4 5.0 ND 6.7	BOD5 mg/L 1.4 0.6 1.1 0.0 1.6	BOD20 mg/L 4.9 1.2 5.6 0.0 3.3	IXLITE meters ND ND ND ND ND ND	TNOC mg/L 8.5 2.2 7.9 15.0 5.9	mg/L 68.4 9.8 78.0 ND 26.0	mg/L 7.9 2.0 6.5 14.0 5.3	TALK mg/L 328 21 335 390 60		
VARIABLE Units STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance	SCHII meters ND ND ND ND ND ND	TURB NTU 7.8 2.4 5.0 ND 6.7 44.7	BOD5 mg/L 1.4 0.6 1.1 0.0 1.6 2.5	BOD20 mg/L 4.9 1.2 5.6 0.0 3.3 10.8	IXLITE meters ND ND ND ND ND ND ND	TNOC mg/L 8.5 2.2 7.9 15.0 5.9 34.4	mg/L 68.4 9.8 78.0 ND 26.0 673.6	mg/L 7.9 2.0 6.5 14.0 5.3 28.4	TALK mg/L 328 21 335 390 60 3593		
VARIABLE units STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	SCHII meters ND ND ND ND ND ND ND ND	TURB NTU 7.8 2.4 5.0 ND 6.7 44.7 2.2	BOD5 mg/L 1.4 0.6 1.1 0.0 1.6 2.5 -0.9	BOD20 mg/L 4.9 1.2 5.6 0.0 3.3 10.8 -0.6	IXLITE meters ND ND ND ND ND ND ND ND ND	TNOC mg/L 8.5 2.2 7.9 15.0 5.9 34.4 -2.2	mg/L 68.4 9.8 78.0 ND 26.0 673.6 1.4	mg/L 7.9 2.0 6.5 14.0 5.3 28.4 -2.2	TALK mg/L 328 21 335 390 60 3593 -2		
VARIABLE units STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	SCHII meters ND ND ND ND ND ND ND ND ND	TURB NTU 7.8 2.4 5.0 ND 6.7 44.7 2.2 1.7	BOD5 mg/L 1.4 0.6 1.1 0.0 1.6 2.5 -0.9 0.6	BOD20 mg/L 4.9 1.2 5.6 0.0 3.3 10.8 -0.6 -0.7	IXLITE meters ND ND ND ND ND ND ND ND ND ND ND	TNOC mg/L 8.5 2.2 7.9 15.0 5.9 34.4 -2.2 0.0	mg/L 68.4 9.8 78.0 ND 26.0 673.6 1.4 -1.4	mg/L 7.9 2.0 6.5 14.0 5.3 28.4 -2.2 0.1	TALK mg/L 328 21 335 390 60 3593 -2 0		
VARIABLE units STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	SCHII meters ND ND ND ND ND ND ND ND ND ND	TURB NTU 7.8 2.4 5.0 ND 6.7 44.7 2.2 1.7 19.3	BOD5 mg/L 1.4 0.6 1.1 0.0 1.6 2.5 -0.9 0.6 4.1	BOD20 mg/L 4.9 1.2 5.6 0.0 3.3 10.8 -0.6 -0.7 9.1	IXLITE meters ND ND ND ND ND ND ND ND ND ND ND 0.0	TNOC mg/L 8.5 2.2 7.9 15.0 5.9 34.4 -2.2 0.0 13.3	mg/L 68.4 9.8 78.0 ND 26.0 673.6 1.4 -1.4 73.0	mg/L 7.9 2.0 6.5 14.0 5.3 28.4 -2.2 0.1 12.3	TALK mg/L 328 21 335 390 60 3593 -2 0 150		
VARIABLE units STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	SCHII meters ND ND ND ND ND ND ND ND ND ND 0.0 0.0	TURB NTU 7.8 2.4 5.0 ND 6.7 44.7 2.2 1.7 19.3 2.5	BOD5 mg/L 1.4 0.6 1.1 0.0 1.6 2.5 -0.9 0.6 4.1 0.0	BOD20 mg/L 4.9 1.2 5.6 0.0 3.3 10.8 -0.6 -0.7 9.1 0.0	IXLITE meters ND ND ND ND ND ND ND ND ND ND 0.0 0.0	TNOC mg/L 8.5 2.2 7.9 15.0 5.9 34.4 -2.2 0.0 13.3 1.7	mg/L 68.4 9.8 78.0 ND 26.0 673.6 1.4 -1.4 73.0 19.0	mg/L 7.9 2.0 6.5 14.0 5.3 28.4 -2.2 0.1 12.3 1.7	TALK mg/L 328 21 335 390 60 3593 -2 0 150 240		

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-03, 124th & Bluemound Road

VARIABLE	РН	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS			0	0	y	0	U		<u> </u>	0	
Mean	7.2	15.8	4.4	0.259	0.032	0.33	1.10	0.091	0.038	ND	9.06
Standard Error	0.1	1.7	0.9	0.032	0.003	0.13	0.06	0.008	0.009	ND	3.86
Median	7.2	16.9	3.3	0.250	0.031	0.19	1.10	0.100	0.035	ND	4.23
Mode	ND	ND	ND	ND	0.038	ND	1.10	0.100	0.050	ND	ND
Standard Deviation	0.1	4.8	2.6	0.091	0.008	0.36	0.17	0.024	0.026	ND	10.92
Sample Variance	0.0	23.4	6.9	0.008	0.000	0.13	0.03	0.001	0.001	ND	119.16
Kurtosis	-0.1	-0.3	-1.3	-1.247	-0.505	2.95	-0.87	0.961	1.221	ND	1.01
Skewness	-0.7	-0.8	0.6	0.437	0.658	1.83	-0.48	-1.092	0.629	ND	1.54
Range	0.4	14.1	7.0	0.240	0.023	1.07	0.45	0.075	0.087	0.00	29.19
Minimum	7.0	7.5	1.5	0.150	0.023	0.03	0.85	0.045	0.000	0.00	1.21
Maximum	7.4	21.5	8.5	0.390	0.046	1.10	1.30	0.120	0.087	0.00	30.40
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.1	4.0	2.2	0.076	0.007	0.30	0.14	0.020	0.022	ND	9.13
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT MPN/100	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	mPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
units STATISTICS	mg/L	mg/L	mg/L			umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
	<u>mg/L</u> 6.6	<u>mg/L</u> 1.6	<i>mg/L</i> 828.8			umhos/cm 1278	<i>mg/L</i> 210.0	<u>ug/L</u>	ug/L 1.1	ug/L 2.2	ug/L 1.5
STATISTICS				mL	mL						
STATISTICS Mean	6.6	1.6	828.8	<u>mL</u> 2364	mL 2552	1278	210.0	0.0	1.1	2.2	1.5
STATISTICS Mean Standard Error	6.6 0.5	1.6 0.7	828.8 128.4	<u>mL</u> 2364 1219	<i>mL</i> 2552 1039	1278 195	210.0 37.8	0.0 0.0	1.1 1.1	2.2 2.2	1.5 0.2
STATISTICS Mean Standard Error Median	6.6 0.5 6.5	1.6 0.7 1.1	828.8 128.4 900.0	<u>mL</u> 2364 1219 705	<u>mL</u> 2552 1039 1250	1278 195 1336	210.0 37.8 205.0	0.0 0.0 0.0	1.1 1.1 1.1	2.2 2.2 2.2	1.5 0.2 1.5
STATISTICS Mean Standard Error Median Mode	6.6 0.5 6.5 5.3	1.6 0.7 1.1 0.0	828.8 128.4 900.0 1200.0	<u>mL</u> 2364 1219 705 ND	<i>mL</i> 2552 1039 1250 ND	1278 195 1336 ND	210.0 37.8 205.0 350.0	0.0 0.0 0.0 0.0	1.1 1.1 1.1 ND	2.2 2.2 2.2 ND	1.5 0.2 1.5 ND
STATISTICS Mean Standard Error Median Mode Standard Deviation	6.6 0.5 6.5 5.3 1.4	1.6 0.7 1.1 0.0 1.9	828.8 128.4 900.0 1200.0 363.3	<i>mL</i> 2364 1219 705 ND 3448	<i>mL</i> 2552 1039 1250 ND 2938	1278 195 1336 ND 550	210.0 37.8 205.0 350.0 107.0	0.0 0.0 0.0 0.0 0.0 0.0	1.1 1.1 1.1 ND 1.5	2.2 2.2 2.2 ND 3.0	1.5 0.2 1.5 ND 0.3
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance	6.6 0.5 6.5 5.3 1.4 2.1	1.6 0.7 1.1 0.0 1.9 3.5	828.8 128.4 900.0 1200.0 363.3 131955.4	mL 2364 1219 705 ND 3448 11890198	<i>mL</i> 2552 1039 1250 ND 2938 8634567	1278 195 1336 ND 550 302802	210.0 37.8 205.0 350.0 107.0 11457.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.1 1.1 1.1 ND 1.5 2.2	2.2 2.2 2.2 ND 3.0 9.2	1.5 0.2 1.5 ND 0.3 0.1
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis	6.6 0.5 6.5 5.3 1.4 2.1 -0.7	1.6 0.7 1.1 0.0 1.9 3.5 -0.8	828.8 128.4 900.0 1200.0 363.3 131955.4 -0.7	mL 2364 1219 705 ND 3448 11890198 3	<i>mL</i> 2552 1039 1250 ND 2938 8634567 0	1278 195 1336 ND 550 302802 -1	210.0 37.8 205.0 350.0 107.0 11457.1 -0.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND	1.1 1.1 1.1 ND 1.5 2.2 ND	2.2 2.2 2.2 ND 3.0 9.2 ND	1.5 0.2 1.5 ND 0.3 0.1 ND
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	6.6 0.5 6.5 5.3 1.4 2.1 -0.7 0.9	1.6 0.7 1.1 0.0 1.9 3.5 -0.8 0.7	828.8 128.4 900.0 1200.0 363.3 131955.4 -0.7 -0.7	mL 2364 1219 705 ND 3448 11890198 3 2	<i>mL</i> 2552 1039 1250 ND 2938 8634567 0 1	1278 195 1336 ND 550 302802 -1 -1	210.0 37.8 205.0 350.0 107.0 11457.1 -0.9 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND	1.1 1.1 1.1 ND 1.5 2.2 ND ND	2.2 2.2 2.2 ND 3.0 9.2 ND ND	1.5 0.2 1.5 ND 0.3 0.1 ND ND
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	6.6 0.5 6.5 5.3 1.4 2.1 -0.7 0.9 3.6	1.6 0.7 1.1 0.0 1.9 3.5 -0.8 0.7 4.8	828.8 128.4 900.0 1200.0 363.3 131955.4 -0.7 -0.7 980.0	mL 2364 1219 705 ND 3448 11890198 3 2 9560	<i>mL</i> 2552 1039 1250 ND 2938 8634567 0 1 7236	1278 195 1336 ND 550 302802 -1 -1 -1 1573	210.0 37.8 205.0 350.0 107.0 11457.1 -0.9 0.0 300.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND 0.0	1.1 1.1 1.1 1.5 2.2 ND ND 2.1	2.2 2.2 2.2 ND 3.0 9.2 ND ND 4.3	1.5 0.2 1.5 ND 0.3 0.1 ND ND 0.4
STATISTICS Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	6.6 0.5 6.5 5.3 1.4 2.1 -0.7 0.9 3.6 5.3	1.6 0.7 1.1 0.0 1.9 3.5 -0.8 0.7 4.8 0.0	828.8 128.4 900.0 1200.0 363.3 131955.4 -0.7 -0.7 980.0 220.0	mL 2364 1219 705 ND 3448 11890198 3 2 9560 140	mL 2552 1039 1250 ND 2938 8634567 0 1 7236 64	1278 195 1336 ND 550 302802 -1 -1 1573 369	210.0 37.8 205.0 350.0 107.0 11457.1 -0.9 0.0 300.0 50.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 ND ND 0.0 0.0 0.0	1.1 1.1 1.1 ND 1.5 2.2 ND ND 2.1 0.0	2.2 2.2 2.2 ND 3.0 9.2 ND ND 4.3 0.0	1.5 0.2 1.5 ND 0.3 0.1 ND 0.4 1.3

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-04, 116th & Greenfield Avenue

VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	1.2	20.7	79.50	31.30	0.0	2.5	0.0	0.0	822.1	3.0	320
Standard Error	1.2	13.4	50.50	21.70	0.0	2.5	0.0	0.0	128.5	0.2	210
Median	1.2	20.7	79.50	31.30	0.0	2.5	0.0	0.0	894.0	2.8	320
Mode	ND	ND	ND	ND	0.0	ND	0.0	0.0	ND	ND	ND
Standard Deviation	1.6	18.9	71.42	30.69	0.0	3.5	0.0	0.0	363.6	0.6	297
Sample Variance	2.6	356.4	5100.50	941.78	0.0	12.0	0.0	0.0	132199.6	0.3	88200
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.7	0.2	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.7	0.6	ND
Range	2.3	26.7	101.00	43.40	0.0	4.9	0.0	0.0	981.1	1.8	420
Minimum	0.0	7.3	29.00	9.60	0.0	0.0	0.0	0.0	213.6	2.1	110
Maximum	2.3	34.0	130.00	53.00	0.0	4.9	0.0	0.0	1194.7	4.0	530
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	14.6	169.6	641.66	275.72	0.0	31.1	0.0	0.0	304.0	0.5	2668
										_	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		

Summary Statistic	s, Underwood Cree	k Water Qualit	y Data: 2003	, Site UC-04	, 116 th 8	& Greenfield Avenue
-------------------	-------------------	----------------	--------------	--------------	-----------------------	---------------------

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	8.1	2.9	11.6	ND	7.9	53.5	6.8	238
Standard Error	ND	0.7	0.4	1.4	ND	0.4	7.9	0.5	35
Median	ND	7.3	3.2	12.0	ND	7.8	61.0	6.3	270
Mode	ND	ND	ND	14.0	ND	6.7	65.0	6.2	270
Standard Deviation	ND	2.0	1.2	3.8	ND	1.2	22.2	1.3	100
Sample Variance	ND	3.9	1.5	14.6	ND	1.4	494.6	1.7	9993
Kurtosis	ND	-1.0	6.2	-0.6	ND	-2.1	0.0	0.3	0
Skewness	ND	0.7	-2.4	0.3	ND	0.3	-1.0	0.7	-1
Range	0.0	5.5	3.9	11.4	0.0	2.7	65.0	4.2	280
Minimum	0.0	5.8	0.0	6.6	0.0	6.7	15.0	5.0	60
Maximum	0.0	11.3	3.9	18.0	0.0	9.4	80.0	9.2	340
Count	0	8	8	8	0	8	8	8	8
Confidence Level (95.0%)	ND	1.7	1.0	3.2	ND	1.0	18.6	1.1	84

VADIADUE											
VARIABLE	PH su	C TEMP	DO mg/L	AMMONIA mg/L	NITRITE mg/L	NITRATE mg/L	TKN mg/L	PHOS mg/L	SOLPHOS mg/L	SOLSIL mg/L	CHLA mg/m3
	30		mg/∟	IIIg/L	IIIg/L	IIIg/L	IIIg/L	тту/L	IIIg/L	IIIg/L	mg/m3
STATISTICS											
Mean	7.2	14.3	5.0	0.201	0.044	0.56	0.97	0.073	0.029	ND	13.57
Standard Error	0.1	2.2	0.9	0.026	0.008	0.12	0.09	0.009	0.009	ND	8.20
Median	7.3	15.8	5.1	0.205	0.041	0.40	0.98	0.080	0.040	ND	2.62
Mode	7.3	ND	ND	0.110	ND	0.36	ND	ND	0.000	ND	ND
Standard Deviation	0.3	6.1	2.7	0.075	0.023	0.34	0.27	0.024	0.023	ND	23.20
Sample Variance	0.1	37.4	7.1	0.006	0.001	0.12	0.07	0.001	0.001	ND	538.19
Kurtosis	-1.0	-0.4	-2.0	-1.524	-0.429	2.82	0.00	0.119	-2.004	ND	3.87
Skewness	-0.3	-0.8	0.0	0.023	0.703	1.70	-0.04	0.034	-0.458	ND	2.06
Range	0.7	17.2	7.0	0.200	0.065	1.02	0.86	0.073	0.053	0.00	65.19
Minimum	6.8	3.3	1.6	0.110	0.019	0.28	0.54	0.037	0.000	0.00	0.21
Maximum	7.5	20.5	8.6	0.310	0.084	1.30	1.40	0.110	0.053	0.00	65.40
Count	8	8	8	8	8	8	8	7	7	0	8
Confidence Level (95.0%)	0.2	5.1	2.2	0.063	0.019	0.29	0.22	0.022	0.021	ND	19.39
							I				
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
			···· //	CFU/100	MPN/100						
units	mg/L	mg/L	mg/L	mL	mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	6.8	2.1	802.5	9124	3243	1292	216.4	0.0	0.0	3.3	2.1
Standard Error	1.0	0.5	148.2	6703	1010		10.1	0.0			0.0
Median		0.0	140.2	0703	1919	239	48.4	0.0	0.0	0.8	0.3
Mode	5.5	2.0	910.0	985	1919 860	239 1462	48.4 225.0	0.0	0.0	0.8	2.1
	5.5 11.0										
Standard Deviation		2.0	910.0	985	860	1462	225.0	0.0	0.0	3.3	2.1
	11.0	2.0 2.0	910.0 ND	985 ND	860 860	1462 ND	225.0 ND	0.0 0.0	0.0 0.0	3.3 ND	2.1 ND
Standard Deviation	11.0 2.9	2.0 2.0 1.5	910.0 ND 419.3	985 ND 18958	860 860 5427	1462 ND 676	225.0 ND 136.8	0.0 0.0 0.0	0.0 0.0 0.0	3.3 ND 1.1	2.1 ND 0.5
Standard Deviation Sample Variance	11.0 2.9 8.4	2.0 2.0 1.5 2.3	910.0 ND 419.3 175792.9	985 ND 18958 359390941	860 860 5427 29451792	1462 ND 676 457485	225.0 ND 136.8 18726.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	3.3 ND 1.1 1.3	2.1 ND 0.5 0.2
Standard Deviation Sample Variance Kurtosis	11.0 2.9 8.4 -1.2	2.0 2.0 1.5 2.3 1.8	910.0 ND 419.3 175792.9 -1.7	985 ND 18958 359390941 7	860 860 5427 29451792 6	1462 ND 676 457485 -2	225.0 ND 136.8 18726.8 -1.3	0.0 0.0 0.0 0.0 ND	0.0 0.0 0.0 0.0 ND	3.3 ND 1.1 1.3 ND	2.1 ND 0.5 0.2 ND
Standard Deviation Sample Variance Kurtosis Skewness	11.0 2.9 8.4 -1.2 0.8	2.0 2.0 1.5 2.3 1.8 0.9	910.0 ND 419.3 175792.9 -1.7 -0.4	985 ND 18958 359390941 7 3	860 860 5427 29451792 6 2	1462 ND 676 457485 -2 0	225.0 ND 136.8 18726.8 -1.3 0.2	0.0 0.0 0.0 0.0 ND ND	0.0 0.0 0.0 0.0 ND ND	3.3 ND 1.1 1.3 ND ND	2.1 ND 0.5 0.2 ND ND
Standard Deviation Sample Variance Kurtosis Skewness Range	11.0 2.9 8.4 -1.2 0.8 7.2	2.0 2.0 1.5 2.3 1.8 0.9 5.1	910.0 ND 419.3 175792.9 -1.7 -0.4 1050.0	985 ND 18958 359390941 7 3 54930	860 860 5427 29451792 6 2 15955	1462 ND 676 457485 -2 0 1723	225.0 ND 136.8 18726.8 -1.3 0.2 372.0	0.0 0.0 0.0 ND ND 0.0	0.0 0.0 0.0 0.0 ND ND 0.0	3.3 ND 1.1 1.3 ND ND 1.6	2.1 ND 0.5 0.2 ND ND 0.7 1.7
Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	11.0 2.9 8.4 -1.2 0.8 7.2 3.8	2.0 2.0 1.5 2.3 1.8 0.9 5.1 0.0	910.0 ND 419.3 175792.9 -1.7 -0.4 1050.0 250.0	985 ND 18958 359390941 7 3 54930 70	860 860 5427 29451792 6 2 15955 45	1462 ND 676 457485 -2 0 1723 410	225.0 ND 136.8 18726.8 -1.3 0.2 372.0 58.0	0.0 0.0 0.0 ND ND 0.0 0.0	0.0 0.0 0.0 ND ND 0.0 0.0 0.0	3.3 ND 1.1 1.3 ND ND 1.6 2.5	2.1 ND 0.5 0.2 ND ND 0.7

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-04, 116th & Greenfield Avenue

VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	24.4	71.50	30.00	0.6	1.8	0.0	0.0	795.7	3.1	300
Standard Error	0.0	15.6	38.50	18.00	0.6	1.8	0.0	0.0	148.3	0.3	170
Median	0.0	24.4	71.50	30.00	0.6	1.8	0.0	0.0	905.3	3.0	300
Mode	0.0	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	22.1	54.45	25.46	0.8	2.5	0.0	0.0	419.5	1.0	240
Sample Variance	0.0	486.7	2964.50	648.00	0.7	6.5	0.0	0.0	175944.9	0.9	57800
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-1.7	-0.4	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.4	0.4	ND
Range	0.0	31.2	77.00	36.00	1.2	3.6	0.0	0.0	1056.5	2.9	340
Minimum	0.0	8.8	33.00	12.00	0.0	0.0	0.0	0.0	239.0	1.8	130
Maximum	0.0	40.0	110.00	48.00	1.2	3.6	0.0	0.0	1295.5	4.7	470
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	198.2	489.19	228.71	7.6	22.9	0.0	0.0	350.7	0.8	2160

Summary Statistics	s, Underwood Creek Water Qualit	y Data: 2004, Site UC-04	, 116 th & Greenfield Avenue
--------------------	---------------------------------	--------------------------	---

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	7.5	1.6	12.4	ND	6.4	55.3	7.4	246
Standard Error	ND	1.1	0.7	1.5	ND	1.3	15.3	1.7	40
Median	ND	6.9	1.3	13.0	ND	5.1	67.0	7.4	295
Mode	ND	ND	0.0	13.0	ND	5.1	ND	ND	310
Standard Deviation	ND	3.1	1.9	4.1	ND	2.2	26.5	2.4	113
Sample Variance	ND	9.7	3.5	16.8	ND	4.8	702.3	5.8	12778
Kurtosis	ND	-1.2	-1.0	1.1	ND	ND	ND	ND	-2
Skewness	ND	0.5	0.6	-0.9	ND	1.7	-1.6	ND	-1
Range	0.0	8.7	4.8	13.4	0.0	3.8	49.0	3.4	287
Minimum	0.0	4.0	0.0	4.6	0.0	5.1	25.0	5.7	93
Maximum	0.0	12.6	4.8	18.0	0.0	8.9	74.0	9.1	380
Count	0	8	8	8	0	3	3	2	8
Confidence Level (95.0%)	ND	2.6	1.6	3.4	ND	5.5	65.8	21.6	95

Ounnary		,			Quality Data						
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.2	16.2	4.4	0.133	0.033	0.26	0.92	0.088	0.032	ND	5.79
Standard Error	0.1	2.1	0.7	0.025	0.005	0.05	0.08	0.014	0.006	ND	2.05
Median	7.2	16.7	3.9	0.115	0.029	0.24	0.97	0.080	0.033	ND	3.58
Mode	7.2	ND	5.8	0.110	ND	ND	1.00	ND	0.016	ND	ND
Standard Deviation	0.2	5.9	1.9	0.071	0.014	0.14	0.22	0.039	0.017	ND	5.79
Sample Variance	0.0	34.4	3.5	0.005	0.000	0.02	0.05	0.002	0.000	ND	33.58
Kurtosis	2.4	-1.5	-0.7	0.659	3.342	1.90	0.29	2.127	-1.975	ND	1.38
Skewness	-1.2	-0.4	0.6	-0.599	1.719	1.22	0.25	1.357	0.153	ND	1.49
Range	0.7	15.4	5.4	0.220	0.044	0.44	0.67	0.124	0.042	0.00	16.88
Minimum	6.8	6.7	2.2	0.000	0.019	0.10	0.63	0.046	0.014	0.00	0.52
Maximum	7.5	22.1	7.6	0.220	0.063	0.54	1.30	0.170	0.056	0.00	17.40
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.2	4.9	1.6	0.059	0.011	0.11	0.18	0.033	0.014	ND	4.84
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	6.2	2.5	1076.3	2944	2106	1733	302.5	0.0	5.6	5.1	2.7
Standard Error	0.8	0.4	80.6	1684	1011	123	32.7	0.0	0.1	0.0	0.2
Median	5.8	2.6	1075.0	915	665	1730	300.0	0.0	5.6	5.1	2.7
Mode	9.4	3.4	1200.0	ND	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	2.4	1.2	227.9	4763	2859	347	92.5	0.0	0.1	ND	0.2
Sample Variance	5.6	1.5	51941.1	22688313	8174227	120172	8564.3	0.0	0.0	ND	0.0
Kurtosis	-0.6	1.5	-1.7	5	4	-1	-2.0	ND	ND	ND	ND
Skewness	0.2	-1.1	0.1	2	2	0	0.0	ND	ND	ND	ND
Range	6.8	3.8	620.0	13830	8370	1041	240.0	0.0	0.2	0.0	0.3
Minimum	2.6	0.0	780.0	170	230	1233	180.0	0.0	5.5	5.1	2.5
Maximum	9.4	3.8	1400.0	14000	8600	2274	420.0	0.0	5.7	5.1	2.8
Count	8	8	8	8	8	8	8	2	2	1	2
Confidence Level (95.0%)	2.0	1.0	190.5	3982	2390	290	77.4	0.0	1.3	ND	1.9

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-04, 116th & Greenfield Avenue

Summary Statistics, On		I GIEEK	water wi	Janty Data. A		<u>, 110</u>	a Greenin	EIU AVEII			
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	10.5	90.00	46.00	0.4	0.0	0.0	0.0	1070.0	3.0	420
Standard Error	0.0	10.5	10.00	2.00	0.4	0.0	0.0	0.0	80.8	0.2	40
Median	0.0	10.5	90.00	46.00	0.4	0.0	0.0	0.0	1069.8	2.9	420
Mode	0.0	ND	ND	ND	ND	0.0	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	14.8	14.14	2.83	0.6	0.0	0.0	0.0	228.4	0.7	57
Sample Variance	0.0	220.5	200.00	8.00	0.4	0.0	0.0	0.0	52171.7	0.4	3200
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-1.6	-0.6	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	0.1	0.6	ND
Range	0.0	21.0	20.00	4.00	0.9	0.0	0.0	0.0	624.5	1.9	80
Minimum	0.0	0.0	80.00	44.00	0.0	0.0	0.0	0.0	772.9	2.2	380
Maximum	0.0	21.0	100.00	48.00	0.9	0.0	0.0	0.0	1397.4	4.1	460
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	133.4	127.06	25.41	5.5	0.0	0.0	0.0	191.0	0.6	508
	İ								-	-	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK	-	
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L	_	
STATISTICS											
Mean	ND	6.7	1.9	10.0	ND	7.7	71.9	6.8	291		
Standard Error	ND	1.0	0.7	1.6	ND	0.7	5.1	0.4	15	_	
Median	ND	6.4	2.2	8.4	ND	6.7	73.0	6.2	285		
Mode	ND	ND	0.0	ND	ND	ND	ND	6.0	260		
Standard Deviation	ND	2.8	1.8	4.5	ND	2.0	13.4	1.2	43		
Sample Variance	ND	7.6	3.4	20.2	ND	3.8	180.1	1.3	1841	_	
Kurtosis	ND	1.6	-1.1	-1.3	ND	-0.4	-1.0	-0.9	-1		
Skewness	ND	1.0	0.3	0.6	ND	1.2	0.3	1.1	0		
Range	0.0	9.0	4.8	12.3	0.0	4.9	37.0	2.6	120	_	
Minimum	0.0	3.3	0.0	4.7	0.0	6.1	55.0	5.9	230		
Maximum	0.0	12.2	4.8	17.0	0.0	11.0	92.0	8.5	350	_	
Count	0	8	8	8	0	7	7	7	8		
Confidence Level (95.0%)	ND	2.3	1.5	3.8	ND	1.8	12.4	1.1	36		
Confidence Level (95.0 %)	ND	2.0	1.0	0.0							

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-04, 116th & Greenfield Avenue

- ····· ,						,					
VARIABLE	РН	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.8	15.4	9.7	0.125	0.049	0.50	0.69	0.318	0.263	ND	5.10
Standard Error	0.1	1.3	0.4	0.020	0.006	0.09	0.12	0.040	0.036	ND	0.94
Median	7.7	16.2	9.6	0.098	0.043	0.41	0.63	0.365	0.315	ND	5.68
Mode	ND	ND	ND	0.098	0.042	ND	ND	0.390	ND	ND	ND
Standard Deviation	0.3	3.5	1.2	0.057	0.016	0.26	0.33	0.113	0.103	ND	2.66
Sample Variance	0.1	12.5	1.4	0.003	0.000	0.07	0.11	0.013	0.011	ND	7.05
Kurtosis	1.7	-0.7	3.9	3.444	6.366	5.41	0.36	-1.313	-1.001	ND	-1.47
Skewness	1.2	-0.7	1.7	1.864	2.456	2.24	0.93	-0.692	-0.920	ND	-0.34
Range	0.9	9.8	3.8	0.170	0.050	0.81	0.98	0.290	0.260	0.00	7.11
Minimum	7.5	9.8	8.5	0.080	0.038	0.29	0.32	0.140	0.100	0.00	1.40
Maximum	8.4	19.6	12.3	0.250	0.088	1.10	1.30	0.430	0.360	0.00	8.51
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.3	3.0	1.0	0.048	0.014	0.22	0.27	0.094	0.086	ND	2.22
				1							
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	9.4	2.5	515.0	3154	2674	758	94.4	0.0	1.6	4.1	0.9
Standard Error	3.0	1.0	53.5	1376	1228	91	22.3	0.0	1.6	4.1	0.9
Median	5.5	1.8	510.0	1800	1300	774	76.5	0.0	1.6	4.1	0.9
Mode	ND	0.0	480.0	ND	1300	ND	ND	0.0	ND	ND	ND
Standard Deviation	8.4	2.8	151.2	3893	3472	256	63.2	0.0	2.2	5.8	1.2
Sample Variance	71.1	7.6	22857.1	15154568	12054141	65719	3994.6	0.0	4.8	33.6	1.4
Kurtosis	0.3	2.0	0.5	5	7	1	5.0	ND	ND	ND	ND

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-05, 121st & Underwood Parkway

3

10540

460

11000

8

2903

0

870

283

1153

8

214

2.1

195.0

45.0

240.0

8

52.8

ND

0.0

0.0

0.0

2

0.0

ND

3.1

0.0

3.1

2

19.7

ND

8.2

0.0

8.2

2

52.1

ND

1.7

0.0

1.7

2

10.8

2

11948

52

12000

8

3255

Skewness

Range

Count

Minimum

Maximum

Confidence Level (95.0%)

1.3

22.6

2.4

25.0

8

7.0

1.5

8.2

0.0

8.2

8

2.3

-0.5

480.0

240.0

720.0

8

126.4

Summary Statistics, One		u cieer	Water wi	anty Data.	2003, Sile O	5-05, 121			way		
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	3.6	16.8	53.50	14.90	0.0	2.6	0.0	0.1	505.6	3.1	195
Standard Error	3.6	9.2	22.50	5.10	0.0	2.6	0.0	0.1	52.2	0.3	75
Median	3.6	16.8	53.50	14.90	0.0	2.6	0.0	0.1	507.0	3.2	195
Mode	ND	ND	ND	ND	0.0	ND	0.0	ND	ND	ND	ND
Standard Deviation	5.0	13.0	31.82	7.21	0.0	3.7	0.0	0.2	147.7	0.7	106
Sample Variance	25.2	169.3	1012.50	52.02	0.0	13.5	0.0	0.0	21801.1	0.5	11250
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	0.7	1.6	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.6	-1.0	ND
Range	7.1	18.4	45.00	10.20	0.0	5.2	0.0	0.2	464.2	2.4	150
Minimum	0.0	7.6	31.00	9.80	0.0	0.0	0.0	0.0	230.8	1.7	120
Maximum	7.1	26.0	76.00	20.00	0.0	5.2	0.0	0.2	695.0	4.1	270
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	45.1	116.9	285.89	64.80	0.0	33.0	0.0	1.5	123.4	0.6	953
-	-						-			-	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK	_	
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L	-	
STATISTICS											
Mean	ND	7.5	2.1	8.8	ND	4.8	34.4	3.7	141		
Standard Error	ND	2.9	1.0	0.6	ND	1.1	3.1	0.7	13		
Median	ND	3.4	1.2	8.5	ND	3.0	35.5	2.7	140		
Mode	ND	ND	0.0	ND	ND	ND	37.0	2.3	140		
Standard Deviation	ND	8.3	2.9	1.8	ND	3.1	8.7	2.1	36		
Sample Variance	ND	68.4	8.3	3.4	ND	9.8	76.3	4.3	1267		
Kurtosis	ND	3.3	1.9	1.5	ND	-1.1	1.8	-0.6	3]	
Skewness	ND	1.9	1.4	0.1	ND	0.9	-0.9	0.9	-1]	
Range	0.0	23.5	8.1	6.4	0.0	7.9	29.0	5.5	114]	
Minimum	0.0	2.1	0.0	5.6	0.0	2.1	17.0	1.9	66]	
Maximum	0.0	25.6	8.1	12.0	0.0	10.0	46.0	7.4	180]	
-										1	

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-05, 121st & Underwood Parkway

0

ND

8

2.6

8

7.3

8

1.7

8

30

Count

Confidence Level (95.0%)

0

ND

8

6.9

8

2.4

8

1.5

		1									
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	7.5	14.5	10.1	0.099	0.046	0.81	0.88	0.257	0.189	ND	11.69
Standard Error	0.1	1.5	0.9	0.018	0.006	0.12	0.06	0.050	0.037	ND	7.22
Median	7.7	15.5	9.6	0.125	0.049	0.74	0.94	0.270	0.190	ND	4.66
Mode	7.7	ND	ND	0.130	ND	ND	0.91	0.270	ND	ND	ND
Standard Deviation	0.2	4.3	2.5	0.051	0.016	0.34	0.16	0.133	0.098	ND	20.41
Sample Variance	0.0	18.9	6.3	0.003	0.000	0.12	0.03	0.018	0.010	ND	416.65
Kurtosis	-0.6	-0.7	0.4	-0.998	0.188	5.11	-0.20	1.325	-0.127	ND	7.71
Skewness	-1.1	-0.7	0.9	-0.808	0.337	2.11	-1.25	0.464	0.017	ND	2.76
Range	0.5	11.8	7.8	0.139	0.052	1.08	0.39	0.428	0.295	0.00	59.75
Minimum	7.2	6.9	7.0	0.011	0.023	0.52	0.61	0.062	0.045	0.00	2.15
Maximum	7.7	18.7	14.8	0.150	0.075	1.60	1.00	0.490	0.340	0.00	61.90
Count	8	8	8	8	8	8	8	7	7	0	8
Confidence Level (95.0%)	0.2	3.6	2.1	0.043	0.014	0.29	0.13	0.123	0.091	ND	17.06
					-						
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	13.5	4.1	760.0	7047	2635	1187	196.1	0.0	0.6	4.9	2.0
Standard Error	5.2	1.2	125.1	6005	1803	212	48.8	0.0	0.6	0.2	0.7
Median	9.0	2.3	720.0	855	445	1042	155.0	0.0	0.6	4.9	2.0
Mode	13.0	ND	ND	ND	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	14.6	3.4	354.0	16986	5101	598	137.9	0.0	0.8	0.3	0.9
Sample Variance	213.2	11.4	125285.7	288515834	26016629	358078	19017.8	0.0	0.7	0.1	0.8
Kurtosis	4.9	-1.6	-1.0	8	7	-1	-0.5	ND	ND	ND	ND
Skewness	2.1	0.7	0.4	3	3	1	1.0	ND	ND	ND	ND
Range	43.6	8.3	970.0	48977	14870	1511	359.0	0.0	1.2	0.4	1.3
Minimum	3.4	1.1	330.0	23	130	509	71.0	0.0	0.0	4.7	1.3
Maximum	47.0	9.4	1300.0	49000	15000	2020	430.0	0.0	1.2	5.1	2.6
Count	8	8	8	8	8	8	8	2	2	2	2
Confidence Level (95.0%)	12.2	2.8	295.9	14200	4264	500	115.3	0.0	7.6	2.5	8.3

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-05, 121st & Underwood Parkway

Summary Statistics, O				aunty Data.	2007, Olic U	0 00, 121	a onder w		way		
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	15.2	67.00	20.50	0.8	0.0	0.0	0.0	746.5	2.9	250
Standard Error	0.0	7.9	13.00	4.50	0.3	0.0	0.0	0.0	127.9	0.4	50
Median	0.0	15.2	67.00	20.50	0.8	0.0	0.0	0.0	704.5	2.9	250
Mode	0.0	ND	ND	ND	ND	0.0	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	11.1	18.38	6.36	0.4	0.0	0.0	0.0	361.7	1.0	71
Sample Variance	0.0	123.2	338.00	40.50	0.2	0.0	0.0	0.0	130798.9	1.0	5000
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.9	0.6	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	0.4	0.4	ND
Range	0.0	15.7	26.00	9.00	0.6	0.0	0.0	0.0	1013.3	3.3	100
Minimum	0.0	7.3	54.00	16.00	0.5	0.0	0.0	0.0	283.0	1.4	200
Maximum	0.0	23.0	80.00	25.00	1.1	0.0	0.0	0.0	1296.3	4.7	300
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	99.7	165.18	57.18	3.9	0.0	0.0	0.0	302.4	0.8	635
			_					TT		1	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK		
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L	1	
STATISTICS	ļ			ļ			ļ,		ļ 		
Mean	ND	12.1	3.8	15.6	ND	5.5	46.0	5.1	202		
Standard Error	ND	6.4	2.0	6.4	ND	0.7	5.9	0.4	27		
Median	ND	4.2	2.2	8.9	ND	5.0	44.0	5.1	195		
Mode	ND	ND	0.0	16.0	ND	ND	ND	ND	ND		
Standard Deviation		. 7		·			4		· · · · · · · · · · · · · · · · · · ·		
	ND	18.2	5.7	18.2	ND	1.9	15.6	1.1	76		
Sample Variance	ND ND	18.2 331.2	5.7 32.0		ND ND		15.6 244.7	1.1 1.1	76 5768	-	
Sample Variance Kurtosis				18.2	ND	1.9		1			
•	ND	331.2	32.0	18.2 332.6	ND ND	1.9 3.7	244.7	1.1	5768		
Kurtosis	ND ND	331.2 6.6	32.0 5.7	18.2 332.6 6.3	ND ND ND	1.9 3.7 4.1	244.7 -1.3	1.1 -1.1	5768 -1		
Kurtosis Skewness	ND ND ND	331.2 6.6 2.5	32.0 5.7 2.3	18.2 332.6 6.3 2.4	ND ND ND ND	1.9 3.7 4.1 1.9	244.7 -1.3 -0.3	1.1 -1.1 -0.4	5768 -1 0	-	
Kurtosis Skewness Range	ND ND ND 0.0	331.2 6.6 2.5 52.4	32.0 5.7 2.3 17.0	18.2 332.6 6.3 2.4 59.0	ND ND ND ND 0.0	1.9 3.7 4.1 1.9 5.8	244.7 -1.3 -0.3 41.0	1.1 -1.1 -0.4 2.8	5768 -1 0 231	-	
Kurtosis Skewness Range Minimum	ND ND 0.0 0.0	331.2 6.6 2.5 52.4 3.4	32.0 5.7 2.3 17.0 0.0	18.2 332.6 6.3 2.4 59.0 0.0	ND ND ND 0.0 0.0	1.9 3.7 4.1 1.9 5.8 3.7	244.7 -1.3 -0.3 41.0 23.0	1.1 -1.1 -0.4 2.8 3.5	5768 -1 0 231 89		

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-05, 121st & Underwood Parkway

VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS					;		<u>g</u> , <u>_</u>	<u>9</u> , _	····g/ =		
Mean	7.6	15.1	11.0	0.097	0.054	0.72	0.83	0.343	0.284	ND	7.25
Standard Error	0.1	1.3	1.1	0.031	0.010	0.10	0.14	0.023	0.023	ND	0.93
Median	7.6	15.5	9.8	0.050	0.046	0.66	0.78	0.345	0.305	ND	7.80
Mode	ND	ND	ND	ND	0.046	ND	ND	ND	ND	ND	ND
Standard Deviation	0.3	3.7	3.2	0.089	0.027	0.29	0.40	0.065	0.064	ND	2.64
Sample Variance	0.1	13.8	10.0	0.008	0.001	0.08	0.16	0.004	0.004	ND	6.97
Kurtosis	0.7	-2.0	0.3	1.738	1.676	1.55	3.35	-1.593	-1.050	ND	-0.85
Skewness	-0.2	-0.2	1.0	1.526	1.468	1.14	1.64	-0.198	-0.462	ND	-0.65
Range	0.8	9.3	9.2	0.250	0.080	0.92	1.27	0.170	0.180	0.00	7.30
Minimum	7.1	9.8	7.9	0.030	0.030	0.38	0.43	0.250	0.190	0.00	2.80
Maximum	7.9	19.1	17.0	0.280	0.110	1.30	1.70	0.420	0.370	0.00	10.10
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.2	3.1	2.6	0.074	0.023	0.24	0.33	0.054	0.054	ND	2.21
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	5.8	3.0	753.8	11881	32949	1258	202.5	0.0	7.0	6.8	2.7
Standard Error	1.4	0.7	73.5	7427	29607	107	32.1	0.0	1.4	0.0	0.3
Median	4.9	2.4	735.0	2500	3100	1264	170.0	0.0	7.0	6.8	2.7
Mode	ND	2.4	ND	ND	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	4.0	1.9	207.8	21006	83741	302	90.7	0.0	1.9	ND	0.4
Sample Variance	16.1	3.5	43169.6	441258749	7012489669	91419	8221.4	0.0	3.6	ND	0.1
			1010010	111200710							
Kurtosis	1.7	1.4	0.5	5	8	0	2.0	ND	ND	ND	ND
Kurtosis Skewness						0 1	2.0 1.4	ND ND	ND ND	ND ND	ND ND
	1.7	1.4	0.5	5	8 3 239952	_					ND 0.5
Skewness	1.7 1.3	1.4 1.4	0.5 0.0	5 2	8 3	1	1.4	ND	ND	ND	ND
Skewness Range	1.7 1.3 12.4	1.4 1.4 5.6	0.5 0.0 690.0	5 2 59960	8 3 239952	1 907	1.4 280.0	ND 0.0	ND 2.7	ND 0.0	ND 0.5
Skewness Range Minimum	1.7 1.3 12.4 1.6	1.4 1.4 5.6 1.2	0.5 0.0 690.0 410.0	5 2 59960 40	8 3 239952 48	1 907 904	1.4 280.0 110.0	ND 0.0 0.0	ND 2.7 5.6	ND 0.0 6.8	ND 0.5 2.4

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-05, 121st & Underwood Parkway

VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	30.5	76.00	27.00	0.8	0.0	0.0	0.0	747.9	3.2	300
Standard Error	0.0	11.5	1.00	1.00	0.0	0.0	0.0	0.0	73.7	0.4	0
Median	0.0	30.5	76.00	27.00	0.8	0.0	0.0	0.0	730.2	3.4	300
Mode	0.0	ND	ND	ND	ND	0.0	0.0	0.0	ND	ND	300
Standard Deviation	0.0	16.3	1.41	1.41	0.1	0.0	0.0	0.0	208.3	1.1	0
Sample Variance	0.0	264.5	2.00	2.00	0.0	0.0	0.0	0.0	43408.2	1.3	0
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	0.6	-1.0	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	0.1	-0.3	ND
Range	0.0	23.0	2.00	2.00	0.1	0.0	0.0	0.0	694.7	3.2	0
Minimum	0.0	19.0	75.00	26.00	0.7	0.0	0.0	0.0	402.5	1.6	300
Maximum	0.0	42.0	77.00	28.00	0.8	0.0	0.0	0.0	1097.2	4.8	300
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	0.0	146.1	12.71	12.71	0.6	0.0	0.0	0.0	174.2	0.9	0

Summary Statistic	s, Underwood Creek Water Qualit	y Data: 2005, Site UC-05	, 121 st & Underwood Parkway
-------------------	---------------------------------	--------------------------	---

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	4.8	3.3	8.9	ND	4.8	42.0	3.5	198
Standard Error	ND	1.3	1.4	2.0	ND	0.6	5.7	0.4	14
Median	ND	3.7	2.4	8.8	ND	4.6	47.0	3.8	190
Mode	ND	ND	2.6	14.0	ND	ND	ND	ND	220
Standard Deviation	ND	3.8	3.9	5.6	ND	1.5	15.1	1.2	38
Sample Variance	ND	14.2	15.0	31.4	ND	2.2	229.3	1.4	1479
Kurtosis	ND	7.0	4.1	-1.2	ND	-0.3	-0.2	-0.4	1
Skewness	ND	2.6	1.9	-0.2	ND	0.1	-1.0	-0.9	1
Range	0.0	11.5	12.0	16.0	0.0	4.4	41.0	3.2	120
Minimum	0.0	2.4	0.0	0.0	0.0	2.6	16.0	1.5	150
Maximum	0.0	13.9	12.0	16.0	0.0	7.0	57.0	4.7	270
Count	0	8	8	8	0	7	7	7	8
Confidence Level (95.0%)	ND	3.1	3.2	4.7	ND	1.4	14.0	1.1	32

Summary Statist				ator equality	Data: 2005,		, 110 00	001 0 01		CCK I di KW	<u> </u>
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	8.3	18.1	17.8	0.023	0.018	0.25	0.88	0.153	0.076	ND	33.49
Standard Error	0.1	1.8	2.1	0.011	0.006	0.15	0.17	0.037	0.017	ND	17.81
Median	8.4	19.8	17.8	0.010	0.018	0.09	0.76	0.125	0.088	ND	7.62
Mode	ND	ND	ND	0.000	0.000	0.00	ND	0.170	0.110	ND	ND
Standard Deviation	0.3	5.2	6.1	0.031	0.018	0.41	0.49	0.104	0.048	ND	50.36
Sample Variance	0.1	26.8	36.8	0.001	0.000	0.17	0.24	0.011	0.002	ND	2536.19
Kurtosis	0.2	-0.9	-1.4	0.872	-0.735	4.74	-0.77	4.752	-1.932	ND	0.58
Skewness	-0.8	-0.8	0.0	1.318	0.471	2.18	0.72	2.049	-0.113	ND	1.52
Range	1.0	13.5	16.8	0.084	0.048	1.20	1.34	0.324	0.121	0.00	125.93
Minimum	7.7	9.9	9.8	0.000	0.000	0.00	0.36	0.066	0.019	0.00	2.07
Maximum	8.7	23.5	26.6	0.084	0.048	1.20	1.70	0.390	0.140	0.00	128.00
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.3	4.3	5.1	0.026	0.015	0.35	0.41	0.087	0.040	ND	42.10
								-			
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	13.5	3.6	835.0	12557	1943	1153	178.4	0.0	1.3	2.7	1.5
Standard Error	5.9	2.1	97.5	12065	1440	102	18.8	0.0	1.3	2.7	0.4
Median	8.2	1.6	850.0	420	595	1228	170.0	0.0	1.3	2.7	1.5
Mode	ND	2.9	850.0	ND	ND	ND	170.0	0.0	ND	ND	ND
Standard Deviation	15.6	5.6	275.7	34124	4074	289	53.1	0.0	1.8	3.8	0.6
Sample Variance	244.1	31.4	76000.0	1164420135	16600198	83339	2821.1	0.0	3.4	14.6	0.3
Kurtosis	4.7	6.0	2.1	8	8	5	2.5	ND	ND	ND	ND
Skewness	2.1	2.4	-0.3	3	3	-2	-1.3	ND	ND	ND	ND
Range	43.8	16.0	980.0	96965	11939	913	163.0	0.0	2.6	5.4	0.8
Minimum	3.2	0.0	320.0	35	61	487	67.0	0.0	0.0	0.0	1.1
Maximum	47.0	16.0	1300.0	97000	12000	1400	230.0	0.0	2.6	5.4	1.9
Count	7	7	8	8	8	8	8	2	2	2	2
Confidence Level (95.0%)	14.4	5.2	230.5	28528	3406	241	44.4	0.0	16.5	34.3	5.1

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-06, 115th Street & Underwood Creek Parkway

<i></i>				adding Data		,					
VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	1.6	11.5	67.50	29.50	0.0	4.0	0.0	0.2	755.0	2.8	290
Standard Error	1.6	11.5	26.50	15.50	0.0	4.0	0.0	0.2	81.3	0.4	130
Median	1.6	11.5	67.50	29.50	0.0	4.0	0.0	0.2	840.0	2.6	290
Mode	ND	ND	ND	ND	0.0	ND	0.0	ND	ND	ND	ND
Standard Deviation	2.3	16.3	37.48	21.92	0.0	5.6	0.0	0.2	215.2	1.0	184
Sample Variance	5.1	264.5	1404.50	480.50	0.0	31.2	0.0	0.1	46321.3	1.0	33800
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	3.4	3.5	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-1.8	1.5	ND
Range	3.2	23.0	53.00	31.00	0.0	7.9	0.0	0.3	633.5	3.4	260
Minimum	0.0	0.0	41.00	14.00	0.0	0.0	0.0	0.0	311.8	1.5	160
Maximum	3.2	23.0	94.00	45.00	0.0	7.9	0.0	0.3	945.3	5.0	420
Count	2	2	2	2	2	2	2	2	7	8	2
Confidence Level (95.0%)	20.3	146.1	336.71	196.95	0.0	50.2	0.0	2.2	199.0	0.9	1652
										•	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK	-	
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
STATISTICS											
Mean	ND	6.8	2.7	10.4	ND	6.7	47.9	5.4	199		
Standard Error	ND	1.4	1.0	1.5	ND	0.8	4.9	0.7	20		
Median	ND	5.7	2.5	8.5	ND	6.8	52.0	4.9	225		
Mode	ND	ND	0.0	7.8	ND	ND	57.0	ND	240]	
Standard Deviation	ND	3.8	2.8	4.2	ND	2.3	13.9	1.9	55]	
Sample Variance	ND	14.8	8.1	17.5	ND	5.5	193.3	3.5	3050		
Kurtosis	ND	0.9	0.0	1.8	ND	-2.0	0.8	-2.1	2]	

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-06, 115th Street & Underwood Creek Parkway

ND

0.0

0.0

0.0

0

ND

0.1

5.9

4.0

9.9

8

2.0

-1.2

42.0

21.0

63.0

8

11.6

0.4

4.5

3.4

7.9

8

1.6

-2

156

84

240

8

46

Skewness

Minimum

Maximum

Confidence Level (95.0%)

Range

Count

ND

0.0

0.0

0.0

0

ND

1.1

11.9

2.3

14.2

8

3.2

0.8

7.9

0.0

7.9

8

2.4

1.5

11.8

7.2

19.0

8

3.5

Summary Statisti				r					r r		
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	8.0	16.2	15.9	0.034	0.023	0.57	1.05	0.126	0.050	ND	25.69
Standard Error	0.2	2.1	2.3	0.014	0.004	0.29	0.12	0.031	0.013	ND	10.22
Median	8.2	16.5	13.5	0.022	0.023	0.26	1.10	0.106	0.048	ND	17.23
Mode	ND	ND	ND	0.000	ND	ND	1.10	ND	ND	ND	ND
Standard Deviation	0.5	6.0	6.5	0.039	0.012	0.82	0.34	0.075	0.032	ND	28.92
Sample Variance	0.2	35.6	42.1	0.002	0.000	0.67	0.12	0.006	0.001	ND	836.31
Kurtosis	-1.8	-1.3	-1.5	1.079	0.913	5.80	-0.52	-1.237	1.845	ND	0.00
Skewness	-0.4	0.0	0.6	1.369	-0.498	2.33	-0.86	0.413	-0.081	ND	1.05
Range	1.2	16.6	17.1	0.110	0.039	2.50	0.88	0.198	0.098	0.00	78.22
Minimum	7.4	7.5	8.6	0.000	0.000	0.00	0.52	0.032	0.000	0.00	0.58
Maximum	8.6	24.1	25.7	0.110	0.039	2.50	1.40	0.230	0.098	0.00	78.80
Count	8	8	8	8	8	8	8	6	6	0	8
Confidence Level (95.0%)	0.4	5.0	5.4	0.032	0.010	0.69	0.29	0.079	0.033	ND	24.18
		-									
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	25.8	7.1	912.5	1915	1420	1399	228.1	0.0	0.0	4.4	2.7
Standard Error	10.9	2.3	108.6	1294	887	156	34.5	0.0	0.0	0.0	0.8
Median	11.0	4.1	980.0	250	120	1518	215.0	0.0	0.0	4.4	2.7
Mode	ND	ND	1200.0	ND	ND	ND	ND	0.0	0.0	4.4	ND
Standard Deviation	32.6	6.5	307.0	3881	2661	442	97.5	0.0	0.0	0.0	1.1
Sample Variance	1064.7	42.4	94278.6	15061857	7082942	195373	9513.8	0.0	0.0	0.0	1.3
Kurtosis	0.5	-2.0	-0.4	8	7	0	-0.3	ND	ND	ND	ND
Skewness	1.4	0.5	-1.0	3	3	-1	0.5	ND	ND	ND	ND
Range	82.4	15.0	780.0	11958	8169	1273	295.0	0.0	0.0	0.0	1.6
Minimum	2.6	1.0	420.0	42	31	660	95.0	0.0	0.0	4.4	1.9
Maximum	85.0	16.0	1200.0	12000	8200	1933	390.0	0.0	0.0	4.4	3.5
Count	9	8	8	9	9	8	8	2	2	2	2
Confidence Level (95.0%)	25.1	5.4	256.7	2983	2046	370	81.5	0.0	0.0	0.0	10.2

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-06, 115th Street & Underwood Creek Parkway

units ug/L ug/L mg/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L mg/L CFU/100 mL mg/L STATISTICS	Summary Statistics, On		u GIEEK	water w	uanty Data.	2004, 5110 0	5-00, 115	Slieel a	Jilderwoo	U CIEER I a	inway	
STATISTICS 0 0 0 0 0 0 0 0 Mean 0.0 13.3 77.00 35.00 1.1 0.0 0.0 885.8 2.5 340 Standard Error 0.0 13.3 77.00 35.00 1.1 0.0 0.0 112.9 0.3 120 Mecian 0.0 13.3 77.00 35.00 1.1 0.0 0.0 112.9 0.3 120 Mode 0.0 ND ND ND ND 0.0 0.0 0.0 112.9 0.3 120 Sample Variance 0.0 6.61 1058.00 46.00 0.0 0.0 0.0 10.0 10.8 2.8 2.8 2 10.5 10.5 10.0 1.5 0.0 1.6 0.0 0.0 1.6 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <	VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
Mean 0.0 13.3 77.00 35.00 1.1 0.0 0.0 885.8 2.5 340 Standard Error 0.0 5.8 23.00 15.00 0.5 0.0 0.0 0.0 112.9 0.3 120 Median 0.0 13.3 77.00 35.00 1.1 0.0 0.0 0.0 112.9 0.3 120 Mode 0.0 ND ND ND ND 0.0 0.0 0.0 112.9 0.3 120 Sample Vaiance 0.0 ND 10.0 35.0 1.6 2.0 2.0 2 2 2	units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
Standard Error 0.0 5.8 23.00 15.00 0.5 0.0 0.0 112.9 0.3 120 Median 0.0 13.3 77.00 35.00 1.1 0.0 0.0 0.0 973.0 2.4 340 Mode 0.0 ND ND ND ND ND 0.0 0.0 0.0 0.0 973.0 2.4 340 Standard Deviation 0.0 8.1 32.53 21.21 0.8 0.0 0.0 0.0 319.5 0.9 177 Sample Variance 0.0 66.1 1058.00 450.00 0.6 0.0 0.0 0.0 100 ND	STATISTICS											
Median 0.0 13.3 77.00 35.00 1.1 0.0 0.0 973.0 2.4 340 Mode 0.0 ND ND ND ND 0.0 0.0 0.0 ND ND ND ND Standard Deviation 0.0 66.1 1058.00 450.00 0.6 0.0 0.0 0.0 319.5 0.9 170 Sample Variance 0.0 66.1 1058.00 450.00 0.6 0.0 0.0 0.0 102059.4 0.8 2860 Kurtosis ND ND <th< th=""><th>Mean</th><th>0.0</th><th>13.3</th><th>77.00</th><th>35.00</th><th>1.1</th><th>0.0</th><th>0.0</th><th>0.0</th><th>885.8</th><th>2.5</th><th>340</th></th<>	Mean	0.0	13.3	77.00	35.00	1.1	0.0	0.0	0.0	885.8	2.5	340
Mode 0.0 ND ND ND ND 0.0 0.0 0.0 ND ND ND Standard Deviation 0.0 8.1 32.53 21.21 0.8 0.0 0.0 0.0 319.5 0.9 177 Sample Variance 0.0 66.1 1058.00 450.00 0.6 0.0 0.0 0.0 102059.4 0.8 2880 Kurtosis ND ND ND ND ND ND ND 0.0 102059.4 0.8 2880 Mininum 0.0 11.5 46.00 30.00 1.1 0.0 0.0 861.7 2.5 2.0 0.0 0.0 0.0 861.7 2.5 2.0 0.0 0.0 0.0 196.7 4.1 460 Count 2 2 2 2 2 2 2 2 2 2 2 8 9 2 Contidence Level (95.0%) 0.0 73.1 </th <th>Standard Error</th> <th>0.0</th> <th>5.8</th> <th>23.00</th> <th>15.00</th> <th>0.5</th> <th>0.0</th> <th>0.0</th> <th>0.0</th> <th>112.9</th> <th>0.3</th> <th>120</th>	Standard Error	0.0	5.8	23.00	15.00	0.5	0.0	0.0	0.0	112.9	0.3	120
Standard Deviation 0.0 8.1 32.53 21.21 0.8 0.0 0.0 319.5 0.9 170 Sample Variance 0.0 66.1 1058.00 450.00 0.6 0.0 0.0 102059.4 0.8 2880 Kurtosis ND 125 2400 136.5 120 ND 16.0 0.0 0.0 136.5 120 ND 16.5 ND 16.5 16.5 16.5	Median	0.0	13.3	77.00	35.00	1.1	0.0	0.0	0.0	973.0	2.4	340
Sample Variance 0.0 66.1 1058.00 450.00 0.6 0.0 0.0 102059.4 0.8 2880 Kurtosis ND N	Mode	0.0	ND	ND	ND	ND	0.0	0.0	0.0	ND	ND	ND
Kurtosis ND <	Standard Deviation	0.0	8.1	32.53	21.21	0.8	0.0	0.0	0.0	319.5	0.9	170
Skewness ND <	Sample Variance	0.0	66.1	1058.00	450.00	0.6	0.0	0.0	0.0	102059.4	0.8	28800
Range 0.0 11.5 46.00 30.00 1.1 0.0 0.0 0.0 861.7 2.5 240 Minimum 0.0 7.5 54.00 20.00 0.5 0.0 0.0 0.0 335.0 1.6 220 Maximum 0.0 19.0 100.00 50.00 1.6 0.0 0.0 0.0 1196.7 4.1 460 Count 2 2 2 2 2 2 2 8 9 2 Confidence Level (95.0%) 0.0 73.1 292.24 190.59 6.9 0.0 0.0 267.1 0.7 152 VARIABLE SCHII TURB BOD5 BOD20 JKLITE TNOC TNIC TNDC TALK STATISTICS Image ND Mg/L meters mg/L	Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.1	-0.9	ND
Minimum 0.0 7.5 54.00 20.00 0.5 0.0 0.0 0.0 335.0 1.6 220 Maximum 0.0 19.0 100.00 50.00 1.6 0.0 0.0 0.0 1196.7 4.1 460 Count 2 2 2 2 2 2 2 2 2 8 9 2 Confidence Level (95.0%) 0.0 7.3.1 292.24 190.59 6.9 0.0 0.0 0.0 267.1 0.7 152 VARIABLE SCHII TURB BODS BOD20 IXLITE TNOC TNIC TNDC TALK Main meters NTU mg/L Standard Error ND 9.1 1.8 9.5 ND 0.9 7.0 2.0 220 Mode ND 4.3	Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-1.1	0.6	ND
Maximum 0.0 19.0 100.00 50.00 1.6 0.0 0.0 0.196.7 4.1 460 Count 2 3 9 2 Confidence Level (95.0%) 0.0 73.1 292.24 190.59 6.9 0.0 0.0 0.0 267.1 0.7 152 VARIABLE SCHII TURB BOD5 BOD20 IXLITE TNOC TNIC TNDC TALK wints meters NTU mg/L mg/L meters mg/L mg/L mg/L mg/L mg/L Mg/L Standard Error ND 9.1 1.8 9.5 ND 0.8 <th>Range</th> <th>0.0</th> <th>11.5</th> <th>46.00</th> <th>30.00</th> <th>1.1</th> <th>0.0</th> <th>0.0</th> <th>0.0</th> <th>861.7</th> <th>2.5</th> <th>240</th>	Range	0.0	11.5	46.00	30.00	1.1	0.0	0.0	0.0	861.7	2.5	240
Count 2 2 2 2 2 2 2 2 8 9 2 Confidence Level (95.0%) 0.0 73.1 292.24 190.59 6.9 0.0 0.0 0.0 267.1 0.7 152 VARIABLE SCHI TURB BOD5 BOD20 IXLITE TNOC TNIC TNDOC TALK witts meters NTU mg/L mg/L meters mg/L 10.0 56.0 8.1 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	Minimum	0.0	7.5	54.00	20.00	0.5	0.0	0.0	0.0	335.0	1.6	220
Confidence Level (95.0%) 0.0 73.1 292.24 190.59 6.9 0.0 0.0 267.1 0.7 152 VARIABLE SCHII TURB BOD5 BOD20 IXLITE TNOC TNIC TNDC TALK units meters NTU mg/L mg/L meters mg/L	Maximum	0.0	19.0	100.00	50.00	1.6	0.0	0.0	0.0	1196.7	4.1	460
VARIABLE SCHII TURB BOD5 BOD20 IXLITE TNOC TNIC TNDOC TALK units meters NTU mg/L mg/L meters mg/L	Count	2	2	2	2	2	2	2	2	8	9	2
units meters NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L STATISTICS N 19 1 19 1 10 1 10 10 Mean ND 19.6 3.5 19.4 ND 8.5 54.0 8.1 234 Standard Error ND 9.1 1.8 9.5 ND 0.9 7.0 2.0 22 Median ND 4.3 2.5 12.0 ND 8.6 56.0 6.7 250 Mode ND 25.7 5.3 26.9 ND 11.7 14.1 3.4 62 Sample Variance ND 661.2 27.8 723.5 ND 3.0 198.0 11.7 3855 Kurtosis ND 2.5 7.2 7.4 ND -5.7 1.9 ND -1 Skewness ND 1.7 2.6 2.7 ND 0.0 <td< th=""><th>Confidence Level (95.0%)</th><th>0.0</th><th>73.1</th><th>292.24</th><th>190.59</th><th>6.9</th><th>0.0</th><th>0.0</th><th>0.0</th><th>267.1</th><th>0.7</th><th>1525</th></td<>	Confidence Level (95.0%)	0.0	73.1	292.24	190.59	6.9	0.0	0.0	0.0	267.1	0.7	1525
units meters NTU mg/L <	-										1	
STATISTICS ND 19.6 3.5 19.4 ND 8.5 54.0 8.1 234 Mean ND 19.6 3.5 19.4 ND 8.5 54.0 8.1 234 Standard Error ND 9.1 1.8 9.5 ND 0.9 7.0 2.0 22 Median ND 4.3 2.5 12.0 ND 8.6 56.0 6.7 250 Mode ND 25.7 5.3 26.9 ND 1.0.0 56.0 ND 280 Standard Deviation ND 25.7 5.3 26.9 ND 1.7 14.1 3.4 62 Sample Variance ND 661.2 27.8 723.5 ND 3.0 198.0 11.7 3855 Kurtosis ND 1.7 2.6 2.7 ND 0.0 -1 Skewness ND 1.7 2.6 2.7 ND 0.0 6.4 16		SCHII			BOD20	IXLITE		TNIC	TNDOC	TALK	-	
MeanND19.63.519.4ND8.554.08.1234Standard ErrorND9.11.89.5ND0.97.02.022MedianND4.32.512.0ND8.656.06.7250ModeNDND0.012.0ND10.056.0ND280Standard DeviationND25.75.326.9ND1.714.13.462Sample VarianceND661.227.8723.5ND3.0198.011.73855KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.03.234.06.4160Minimum0.02.80.00.00.03.234.06.4160Maximum0.07.417.085.00.03.234.06.4160Maximum0.07.417.085.00.010.069.012.0300Count089804438	units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L	-	
Standard ErrorND9.11.89.5ND0.97.02.022MedianND4.32.512.0ND8.656.06.7250ModeNDND0.012.0ND10.056.0ND280Standard DeviationND25.75.326.9ND1.714.13.462Sample VarianceND661.227.8723.5ND3.0198.011.73855KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.03.234.06.4160Minimum0.02.80.00.00.06.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	STATISTICS											
MedianND4.32.512.0ND8.656.06.7250ModeNDND0.012.0ND10.056.0ND280Standard DeviationND25.75.326.9ND1.714.13.462Sample VarianceND661.227.8723.5ND3.0198.011.73855KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.0-0.81.5-1Range0.071.617.085.00.03.234.06.4160Minimum0.02.80.00.00.06.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	Mean	ND	19.6	3.5	19.4	ND	8.5	54.0	8.1	234		
ModeNDND0.012.0ND10.056.0ND280Standard DeviationND25.75.326.9ND1.714.13.462Sample VarianceND661.227.8723.5ND3.0198.011.73855KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.0-0.81.5-1Range0.071.617.085.00.03.234.064.4160Minimum0.02.80.00.00.068.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	Standard Error	ND	9.1	1.8	9.5	ND	0.9	7.0	2.0	22		
Standard DeviationND25.75.326.9ND1.714.13.462Sample VarianceND661.227.8723.5ND3.0198.011.73855KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.0-0.81.5-1Range0.071.617.085.00.03.234.064.4160Minimum0.02.80.00.00.06.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	Median	ND	4.3	2.5	12.0	ND	8.6	56.0	6.7	250		
Sample VarianceND661.227.8723.5ND3.0198.011.73855KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.0-0.81.5-1Range0.071.617.085.00.03.234.06.4160Minimum0.02.80.00.00.06.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	Mode	ND	ND	0.0	12.0	ND	10.0	56.0	ND		1	
KurtosisND2.57.27.4ND-5.71.9ND-1SkewnessND1.72.62.7ND0.0-0.81.5-1Range0.071.617.085.00.03.234.06.4160Minimum0.02.80.00.00.06.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	Standard Deviation	ND	25.7	5.3	26.9	ND	1.7	14.1	3.4	62	1	
Skewness ND 1.7 2.6 2.7 ND 0.0 -0.8 1.5 -1 Range 0.0 71.6 17.0 85.0 0.0 3.2 34.0 6.4 160 Minimum 0.0 2.8 0.0 0.0 0.0 6.8 35.0 5.6 140 Maximum 0.0 74.4 17.0 85.0 0.0 10.0 69.0 12.0 300 Count 0 8 9 8 0 4 4 3 8	Sample Variance	ND	661.2	27.8	723.5	ND	3.0	198.0	11.7	3855	1	
Range0.071.617.085.00.03.234.06.4160Minimum0.02.80.00.00.06.835.05.6140Maximum0.074.417.085.00.010.069.012.0300Count089804438	Kurtosis	ND			7.4		-5.7	1.9	ND	-1	1	
Minimum 0.0 2.8 0.0 0.0 0.0 6.8 35.0 5.6 140 Maximum 0.0 74.4 17.0 85.0 0.0 10.0 69.0 12.0 300 Count 0 8 9 8 0 4 4 3 8	Skewness	ND	1.7	2.6	2.7	ND			1.5	-1	4	
Maximum 0.0 74.4 17.0 85.0 0.0 10.0 69.0 12.0 300 Count 0 8 9 8 0 4 4 3 8	Range	0.0	71.6	17.0	85.0	0.0	3.2	34.0	6.4	160	1	
Count 0 8 9 8 0 4 4 3 8	Minimum					0.0		35.0	5.6	-	1	
	Maximum	0.0	74.4	17.0	85.0	0.0	10.0	69.0	12.0	300	4	
Confidence Level (95.0%) ND 21.5 4.1 22.5 ND 2.8 22.4 8.5 52	Count	0	8	9	8	0	4	4	3	8	1	
	Confidence Level (95.0%)	ND	21.5	4.1	22.5	ND	2.8	22.4	8.5	52		

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-06, 115th Street & Underwood Creek Parkway

VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	РП SU	C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
	50	0	iiig/L	ing/E	IIIg/L	IIIg/L	iiig/L	IIIg/L	IIIg/L	IIIg/L	mg/mo
STATISTICS		477	47.0	0.044	0.004	0.45	0.00	0.450	0.000	ND	40.00
Mean	8.2	17.7	17.6	0.014	0.024	0.15	0.96	0.156	0.086	ND	18.26
Standard Error	0.1	1.7	2.7	0.009	0.006	0.05	0.12	0.028	0.021	ND	8.08
Median	8.2	19.0	18.1	0.000	0.019	0.11	0.90	0.155	0.074	ND	9.53
Mode	ND	ND	ND	0.000	ND	ND	ND	ND	ND	ND	ND
Standard Deviation	0.4	4.9	7.5	0.027	0.017	0.14	0.35	0.079	0.060	ND	22.86
Sample Variance	0.2	24.0	56.3	0.001	0.000	0.02	0.12	0.006	0.004	ND	522.46
Kurtosis	-1.9	0.7	-1.9	1.534	-1.317	0.71	-0.57	-0.978	-1.002	ND	6.34
Skewness	0.0	-1.0	0.0	1.680	0.668	1.10	0.07	-0.195	0.547	ND	2.46
Range	1.0	14.6	18.5	0.068	0.043	0.41	1.08	0.229	0.165	0.00	68.45
Minimum	7.7	8.2	8.8	0.000	0.008	0.01	0.42	0.031	0.015	0.00	4.35
Maximum	8.7	22.9	27.3	0.068	0.051	0.42	1.50	0.260	0.180	0.00	72.80
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.3	4.1	6.3	0.022	0.015	0.12	0.29	0.066	0.050	ND	19.11
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	8.5	3.4	978.8	23677	47618	1543	256.3	0.0	6.6	5.8	3.2
Standard Error	1.8	1.2	53.3	14998	29801	76	22.4	0.0	0.1	0.0	0.0
Median	7.5	2.3	950.0	510	790	1509	240.0	0.0	6.6	5.8	3.2
Mode	13.0	0.0	1200.0	ND	ND	ND	220.0	0.0	ND	ND	ND
Standard Deviation	5.0	3.3	150.8	39682	84291	216	63.2	0.0	0.1	ND	0.1
Sample Variance	25.1	10.9	22755.4	1574670296	7104914973	46569	3998.2	0.0	0.0	ND	0.0
Kurtosis	-1.8	-0.7	-0.8	0	5	0	0.9	ND	ND	ND	ND
Skewness	0.3	0.8	0.7	1	2	0	1.1	ND	ND	ND	ND
Range	12.8	8.8	400.0	91932	239924	693	190.0	0.0	0.1	0.0	0.1
Minimum	3.2	0.0	800.0	68	76	1208	190.0	0.0	6.5	5.8	3.1
Maximum	16.0	8.8	1200.0	92000	240000	1901	380.0	0.0	6.6	5.8	3.2
Count	8	8	8	7	8	8	8	2	2	1	2
Confidence Level (95.0%)	4.2	2.8	126.1	36700	70469	180	52.9	0.0	0.6	ND	0.6

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-06, 115th Street & Underwood Creek Parkway

VARIABLEPBZNCAMGAGAGSEHGDSLFCHARAminisuglugluglugluglugluglmglCEU/100 mmglSTATISTCS </th <th>Summary Statistics, O</th> <th></th> <th></th> <th>R mater</th> <th>guanty Data.</th> <th>2000, 0110 00</th> <th>,,</th> <th>Uncer a</th> <th></th> <th>JU CIEER I d</th> <th>i kway</th> <th></th>	Summary Statistics, O			R mater	guanty Data.	2000, 0110 00	,,	Uncer a		JU CIEER I d	i kway	
STATISTICS D <thd< th=""><th>VARIABLE</th><th>PB</th><th>ZN</th><th>СА</th><th>MG</th><th>AG</th><th>AS</th><th>SE</th><th>HG</th><th>DS</th><th>LFC</th><th>HARD</th></thd<>	VARIABLE	PB	ZN	СА	MG	AG	AS	SE	HG	DS	LFC	HARD
Mean 0.0 12.5 98.50 40.00 1.0 0.0 0.0 970.2 3.2 410 Standard Error 0.0 1.5 11.50 5.00 0.1 0.0 0.0 0.0 53.2 0.5 50 Median 0.0 1.52 98.50 40.00 1.0 0.0 0.0 0.0 53.2 0.5 50 Median 0.0 ND ND ND ND 0.0 0.0 0.0 0.0 970.2 3.2 410 Median 0.0 ND ND ND ND ND 0.0 0.0 0.0 0.0 0.0 0.0 93.2 2.7 410 Standard Deviation 0.0 2.1 16.26 7.07 0.2 0.0 0.0 0.0 0.0 1.1 0.0 22606.9 1.7 5000 Karness ND ND ND ND ND ND ND 0.0 0.0	units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
Standard Error 0.0 1.5 11.50 5.00 0.1 0.0 0.0 0.0 53.2 0.5 50 Median 0.0 12.5 98.50 40.00 1.0 0.0 0.0 0.0 942.5 2.7 410 Mode 0.0 ND ND ND ND 0.0 0.0 0.0 942.5 2.7 410 Standard Deviation 0.0 16.26 7.07 0.2 0.0 0.0 0.0 150.4 1.3 71 Sample Variance 0.0 4.5 264.50 50.00 0.0 0.0 0.0 0.0 22606.9 1.7 5000 Kurtosis ND 0.0 0.0 0.0 40.11.1 31 100 Rearge 0.0 11.0 45.00 1.1 0.0 0.0 <t< th=""><th>STATISTICS</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	STATISTICS											
Median 0.0 12.5 98.50 40.00 1.0 0.0 0.0 0.0 942.5 2.7 410 Mode 0.0 ND ND ND ND 0.0 0.0 0.0 ND ND ND ND Standard Deviation 0.0 4.5 264.50 50.00 0.0 0.0 0.0 150.4 1.3 71 Sample Variance 0.0 4.5 264.50 50.00 0.0 0.0 0.0 22606.9 1.7 5000 Kurtosis ND ND ND ND ND ND ND ND 0.0 0.0 0.0 0.0 0.0 7.7 7.7 ND Range 0.0 3.0 23.00 10.00 0.3 0.0 0.0 0.0 0.0 1.1 3.1 100 Maximum 0.0 14.0 110.0 45.00 1.1 0.0 0.0 125.7 1.2 635	Mean	0.0	12.5	98.50	40.00	1.0	0.0	0.0	0.0	970.2	3.2	410
Mode 0.0 ND ND ND ND 0.0 0.0 0.0 ND ND ND Standard Deviation 0.0 2.1 16.26 7.07 0.2 0.0 0.0 0.0 150.4 1.3 71 Sample Variance 0.0 4.5 264.50 50.00 0.0 0.0 0.0 22606.9 1.7 5000 Kurtosis ND ND ND ND ND ND ND 0.0 0.0 0.0 22606.9 1.7 5000 Range 0.0 ND ND ND ND ND ND 3.0 2.0 1.0.0 1.0 10.0 1.0 10.0 1.0 <t< th=""><th>Standard Error</th><th>0.0</th><th>1.5</th><th>11.50</th><th>5.00</th><th>0.1</th><th>0.0</th><th>0.0</th><th>0.0</th><th>53.2</th><th>0.5</th><th>50</th></t<>	Standard Error	0.0	1.5	11.50	5.00	0.1	0.0	0.0	0.0	53.2	0.5	50
Standard Deviation 0.0 2.1 16.26 7.07 0.2 0.0 0.0 0.0 150.4 1.3 71 Sample Variance 0.0 4.5 264.50 50.00 0.0 0.0 0.0 2606.9 1.7 5000 Kurtosis ND 1.1 0.0 0.0 110.5 5.0 460 Court 2 2 2 8 7 2 Confidence Level (95.0%)	Median	0.0	12.5	98.50	40.00	1.0	0.0	0.0	0.0	942.5	2.7	410
Sample Variance 0.0 4.5 264.50 50.00 0.0 0.0 0.0 22606.9 1.7 5000 Kurtosis ND ND <th>Mode</th> <th>0.0</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>0.0</th> <th>0.0</th> <th>0.0</th> <th>ND</th> <th>ND</th> <th>ND</th>	Mode	0.0	ND	ND	ND	ND	0.0	0.0	0.0	ND	ND	ND
KurtosisNDNDNDNDNDNDNDNDNDNDNDSkewnessND	Standard Deviation	0.0	2.1	16.26	7.07	0.2	0.0	0.0	0.0	150.4	1.3	71
Skewness ND <	Sample Variance	0.0	4.5	264.50	50.00	0.0	0.0	0.0	0.0	22606.9	1.7	5000
Range 0.0 3.0 23.00 10.00 0.3 0.0 0.0 401.1 3.1 100 Minimum 0.0 11.0 87.00 35.00 0.9 0.0 0.0 0.0 795.4 1.8 360 Maximum 0.0 14.0 10.00 45.00 1.1 0.0 0.0 0.0 196.5 5.0 460 Count 2 2 2 2 2 2 8 7 2 Confidence Level (95.0%) 0.0 19.1 146.12 63.53 1.6 0.0 0.0 125.7 1.2 635 VARIABLE SCHII TURB BOD5 BOD20 IXLITE TNOC TNIC TNDC TALK Stantard meters Mg/L Stantard Func ND 4.4 3.0 8.3 <t< th=""><th>Kurtosis</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>ND</th><th>-0.7</th><th>-1.5</th><th>ND</th></t<>	Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.7	-1.5	ND
Minimum 0.0 11.0 87.00 35.00 0.9 0.0 0.0 795.4 1.8 360 Maximum 0.0 14.0 110.00 45.00 1.1 0.0 0.0 1196.5 5.0 460 Count 2 2 2 2 2 2 2 8 7 2 Confidence Level (95.0%) 0.0 19.1 146.12 633 1.6 0.0 0.0 0.0 125.7 1.2 635 VARIABLE SCHII TURB BODS BOD20 IXLITE TNOC TNIC TNLC TALK Main meters NTU mg/L mg/L meters mg/L mg/L mg/L mg/L mg/L mg/L mg/L Standard Error ND 4.0 3.9 10.3 ND 6.9 50.0 5.7 245 Mode ND 0.0 16.0 ND 1.0 49.0 ND 240 <th>Skewness</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>ND</th> <th>0.7</th> <th>0.7</th> <th>ND</th>	Skewness	ND	ND	ND	ND	ND	ND	ND	ND	0.7	0.7	ND
Maximum 0.0 14.0 110.00 45.00 1.1 0.0 0.0 0.0 1196.5 5.0 460 Count 2 2 2 2 2 2 2 2 2 2 2 2 2 8 7 2 Confidence Level (95.0%) 0.0 19.1 146.12 63.53 1.6 0.0 0.0 0.0 125.7 1.2 635 VARIABLE SCHII TURB BODS BOD20 IXLITE TNOC TNIC TNDC TALK meters MrU mg/L mg/L mg/L mg/L mg/L mg/L mg/L STATISTICS Image ND 4.0 3.9 10.3 ND 7.5 52.3 6.2 244 Standard Error ND 0.5 1.3 1.8 ND 1.2 3.2 1.3 7 Standard Deviation ND 1.4 3.8 5.2 ND	Range	0.0	3.0	23.00	10.00	0.3	0.0	0.0	0.0	401.1	3.1	100
Count 2 2 2 2 2 2 2 2 8 7 2 Confidence Level (95.0%) 0.0 19.1 146.12 63.53 1.6 0.0 0.0 0.0 125.7 1.2 635 VARIABLE SCH/II TURB BODS BOD20 IXLITE TNOC TNIC TNDOC TALK wnits meters NTU mg/L mg/L meters mg/L mg/L mg/L mg/L fmg/L mg/L fmg/L mg/L fmg/L mg/L fmg/L	Minimum	0.0	11.0	87.00	35.00	0.9	0.0	0.0	0.0	795.4	1.8	360
Confidence Level (95.0%) 0.0 19.1 146.12 63.53 1.6 0.0 0.0 125.7 1.2 635 VARIABLE SCHII TURB BOD5 BOD20 IXLITE TNOC TNIC TNOC TALK units meters NTU mg/L mg/L <th< th=""><th>Maximum</th><th>0.0</th><th>14.0</th><th>110.00</th><th>45.00</th><th>1.1</th><th>0.0</th><th>0.0</th><th>0.0</th><th>1196.5</th><th>5.0</th><th>460</th></th<>	Maximum	0.0	14.0	110.00	45.00	1.1	0.0	0.0	0.0	1196.5	5.0	460
VARIABLE SCHII TURB BOD5 BOD20 IXLITE TNOC TNIC TNDOC TALK units meters NTU mg/L	Count	2	2	2	2	2	2	2	2	8	7	2
unitsmetersNTUmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/LSTATISTICSIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Confidence Level (95.0%)	0.0	19.1	146.12	63.53	1.6	0.0	0.0	0.0	125.7	1.2	635
unitsmetersNTUmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/LSTATISTICSIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII											1	
STATISTICS ND 4.0 3.9 10.3 ND 7.5 52.3 6.2 244 Mean ND 4.0 3.9 10.3 ND 7.5 52.3 6.2 244 Standard Error ND 0.5 1.3 1.8 ND 1.2 3.2 1.3 7 Median ND 4.4 3.0 8.3 ND 6.9 50.0 5.7 245 Mode ND 0.0 16.0 ND 11.0 49.0 ND 240 Standard Deviation ND 1.4 3.8 5.2 ND 3.0 7.9 3.1 18 Sample Variance ND 2.0 14.3 26.7 ND 8.8 62.3 9.7 341 Kurtosis ND -1.3 -0.7 -2.0 ND -1.7 1.5 -0.9 1 Skewness ND -1.3 0.0 4.3 0.0 3.8 43.0											-	
MeanND4.03.910.3ND7.552.36.2244Standard ErrorND0.51.31.8ND1.23.21.37MedianND4.43.08.3ND6.950.05.7245ModeNDND0.016.0ND11.049.0ND240Standard DeviationND1.43.85.2ND3.07.93.118Sample VarianceND2.014.326.7ND8.862.39.7341KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Minimum0.01.99.812.70.07.223.08.2600Maximum0.08.80.06.6668	units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
Standard ErrorND0.51.31.8ND1.23.21.37MedianND4.43.08.3ND6.950.05.7245ModeNDND0.016.0ND11.049.0ND240Standard DeviationND1.43.85.2ND3.07.93.118Sample VarianceND2.014.326.7ND8.862.39.7341KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Range0.01.99.812.70.07.223.08.260Minimum0.01.98.80.03.843.02.8210Maximum0.08.89.817.00.011.066.011.0270Count08.8806668	STATISTICS											
MedianND4.43.08.3ND6.950.05.7245ModeNDND0.016.0ND11.049.0ND240Standard DeviationND1.43.85.2ND3.07.93.118Sample VarianceND2.014.326.7ND8.862.39.7341KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Range0.01.99.812.70.07.223.08.260Minimum0.05.89.817.00.011.066.011.0270Count0880668	Mean	ND	4.0	3.9	10.3	ND	7.5	52.3	6.2	244		
ModeNDND0.016.0ND11.049.0ND240Standard DeviationND1.43.85.2ND3.07.93.118Sample VarianceND2.014.326.7ND8.862.39.7341KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Range0.03.99.812.70.07.223.08.260Minimum0.01.90.04.30.03.843.02.8210Maximum0.05.89.817.00.011.066.011.0270Count08806688	Standard Error	ND	0.5	1.3	1.8	ND	1.2	3.2	1.3	7		
Standard DeviationND1.43.85.2ND3.07.93.118Sample VarianceND2.014.326.7ND8.862.39.7341KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Range0.03.99.812.70.07.223.08.260Minimum0.01.90.04.30.03.843.02.8210Maximum0.05.89.817.00.011.066.011.0270Count08880668	Median	ND	4.4	3.0	8.3	ND	6.9	50.0	5.7	245		
Sample VarianceND2.014.326.7ND8.862.39.7341KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Range0.03.99.812.70.07.223.08.260Minimum0.01.90.04.30.03.843.02.8210Maximum0.05.89.817.00.011.066.011.0270Count08880668	Mode	ND	ND	0.0	16.0	ND	11.0	49.0	ND	240		
KurtosisND-1.3-0.7-2.0ND-1.71.5-0.91SkewnessND-0.40.80.4ND0.21.00.6-1Range0.03.99.812.70.07.223.08.260Minimum0.01.90.04.30.03.843.02.8210Maximum0.05.89.817.00.011.066.011.0270Count0880668	Standard Deviation	ND	1.4	3.8	5.2	ND	3.0	7.9	3.1	18		
Skewness ND -0.4 0.8 0.4 ND 0.2 1.0 0.6 -1 Range 0.0 3.9 9.8 12.7 0.0 7.2 23.0 8.2 60 Minimum 0.0 1.9 0.0 4.3 0.0 3.8 43.0 2.8 210 Maximum 0.0 5.8 9.8 17.0 0.0 11.0 66.0 11.0 270 Count 0 8 8 0 6 6 8	Sample Variance	ND		14.3	26.7	ND		62.3	9.7	341		
Range0.03.99.812.70.07.223.08.260Minimum0.01.90.04.30.03.843.02.8210Maximum0.05.89.817.00.011.066.011.0270Count08880668	Kurtosis	ND		-0.7	-2.0		-1.7	1.5	-0.9	1		
Minimum 0.0 1.9 0.0 4.3 0.0 3.8 43.0 2.8 210 Maximum 0.0 5.8 9.8 17.0 0.0 11.0 66.0 11.0 270 Count 0 8 8 8 0 6 6 8	Skewness	ND	-0.4	0.8	0.4	ND	0.2	1.0	0.6	-1		
Maximum 0.0 5.8 9.8 17.0 0.0 11.0 66.0 11.0 270 Count 0 8 8 0 6 6 8	Range	0.0	3.9	9.8	12.7	0.0	7.2	23.0	8.2	60		
Count 0 8 8 0 6 6 8	Minimum	0.0	1.9	0.0	4.3	0.0	3.8	43.0	2.8	210		
	Maximum	0.0	5.8	9.8	17.0	0.0	11.0	66.0	11.0	270		
Confidence Level (95.0%) ND 1.2 3.2 4.3 ND 3.1 8.3 3.3 15	Count	0	8	8	8	0	6	6	6	8		
	Confidence Level (95.0%)	ND	1.2	3.2	4.3	ND	3.1	8.3	3.3	15	J	

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-06, 115th Street & Underwood Creek Parkway

VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	C	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mq/L	mg/L	mg/m3
STATISTICS			0		0	0	0	0		V	
Mean	8.4	19.1	11.8	0.021	0.015	0.27	0.75	0.102	0.060	ND	6.97
Standard Error	0.1	2.1	0.6	0.014	0.007	0.16	0.19	0.019	0.017	ND	1.47
Median	8.4	21.2	11.6	0.000	0.013	0.08	0.54	0.093	0.056	ND	6.43
Mode	8.3	ND	ND	0.000	0.000	0.00	ND	0.100	ND	ND	ND
Standard Deviation	0.2	5.9	1.7	0.038	0.018	0.43	0.54	0.054	0.048	ND	4.15
Sample Variance	0.0	34.4	2.8	0.001	0.000	0.19	0.29	0.003	0.002	ND	17.24
Kurtosis	0.2	-1.2	0.1	5.145	1.808	4.79	2.63	3.979	2.422	ND	-0.43
Skewness	-0.8	-0.8	0.5	2.224	1.389	2.15	1.75	1.636	1.223	ND	0.74
Range	0.6	14.1	5.3	0.110	0.050	1.20	1.55	0.184	0.160	0.00	11.66
Minimum	8.0	10.4	9.5	0.000	0.000	0.00	0.35	0.036	0.000	0.00	2.44
Maximum	8.6	24.5	14.8	0.110	0.050	1.20	1.90	0.220	0.160	0.00	14.10
Count	8	8	8	8	7	7	8	8	8	0	8
Confidence Level (95.0%)	0.2	4.9	1.4	0.032	0.017	0.40	0.45	0.045	0.040	ND	3.47
		1/00	70	55044	500/107	0050	0111 0 0	00	0.5	011	
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	6.3	0.7	807.5	2481	2388	1253	225.7	0.0	0.8	6.8	1.6
Standard Error	2.0	0.4	71.3	1802	1806	104	18.9	0.0	0.8	5.3	0.4
Median	4.5	0.0	855.0	675	670	1349	230.0	0.0	0.8	6.8	1.6
Mode	ND	0.0	ND	230	ND	ND	230.0	0.0	ND	ND	ND
Standard Deviation	5.7	1.1	201.7	5097	5108	293	50.0	0.0	1.1	7.4	0.5
Sample Variance	32.3	1.1	40678.6	25979755	26087107	85961	2495.2	0.0	1.3	55.1	0.2
Kurtosis	3.9	1.1	3.2	8	8	3	4.6	ND	ND	ND	ND
Skewness	1.9	1.4	-1.7	3	3	-1	-1.9	ND	ND	ND	ND
Range	17.1	2.8	630.0	14960	14890	962	160.0	0.0	1.6	10.5	0.7
Minimum	1.9	0.0	370.0	40	110	629	120.0	0.0	0.0	1.5	1.2
Maximum	19.0	2.8	1000.0	15000	15000	1591	280.0	0.0	1.6	12.0	1.9
Count	8	8	8	8	8	8	7	2	2	2	2
oount	-										

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-07, 107th Street & Fisher Parkway

						••••			· · · · · · · · · · · · · · · · · · ·		1
VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	3.4	10.5	62.00	28.00	0.0	3.7	0.0	0.0	801.2	2.8	270
Standard Error	3.4	10.5	26.00	16.00	0.0	3.7	0.0	0.0	72.0	0.3	130
Median	3.4	10.5	62.00	28.00	0.0	3.7	0.0	0.0	849.2	2.8	270
Mode	ND	ND	ND	ND	0.0	ND	0.0	0.0	ND	2.4	ND
Standard Deviation	4.7	14.8	36.77	22.63	0.0	5.2	0.0	0.0	203.5	0.8	184
Sample Variance	22.4	220.5	1352.00	512.00	0.0	26.6	0.0	0.0	41423.2	0.6	33800
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	2.9	1.0	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-1.6	0.4	ND
Range	6.7	21.0	52.00	32.00	0.0	7.3	0.0	0.0	632.0	2.6	260
Minimum	0.0	0.0	36.00	12.00	0.0	0.0	0.0	0.0	364.5	1.6	140
Maximum	6.7	21.0	88.00	44.00	0.0	7.3	0.0	0.0	996.5	4.2	400
Count	2	2	2	2	2	2	2	2	8	8	2
Confidence Level (95.0%)	42.6	133.4	330.36	203.30	0.0	46.4	0.0	0.0	170.2	0.6	1652

Summary Statistics, Underwood Creek Water Quality Data: 2003, Site UC-07, 107th Street & Fisher Parkway

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	4.6	1.9	7.4	ND	7.0	43.8	5.6	187
Standard Error	ND	1.7	0.8	1.1	ND	0.9	4.3	0.6	21
Median	ND	2.6	1.2	8.1	ND	6.3	49.5	5.1	210
Mode	ND	ND	0.0	ND	ND	10.0	50.0	ND	210
Standard Deviation	ND	4.8	2.2	3.3	ND	2.4	12.0	1.8	56
Sample Variance	ND	23.1	4.7	10.5	ND	6.0	144.5	3.2	3157
Kurtosis	ND	4.3	-1.1	4.7	ND	-2.2	1.1	-2.0	1
Skewness	ND	2.1	0.6	-1.9	ND	0.3	-1.4	0.3	-2
Range	0.0	14.0	5.5	11.0	0.0	5.5	35.0	4.5	150
Minimum	0.0	1.5	0.0	0.0	0.0	4.5	20.0	3.4	80
Maximum	0.0	15.5	5.5	11.0	0.0	10.0	55.0	7.9	230
Count	0	8	8	8	0	8	8	8	7
Confidence Level (95.0%)	ND	4.0	1.8	2.7	ND	2.0	10.0	1.5	52

		-,					, -				
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	8.2	17.0	12.6	0.027	0.020	0.45	1.13	0.106	0.029	ND	17.42
Standard Error	0.1	2.2	0.8	0.012	0.004	0.26	0.31	0.034	0.008	ND	10.75
Median	8.3	17.5	12.8	0.018	0.021	0.20	0.86	0.085	0.033	ND	3.37
Mode	8.7	ND	ND	ND	ND	ND	ND	ND	0.000	ND	ND
Standard Deviation	0.4	6.4	2.2	0.035	0.011	0.74	0.88	0.091	0.022	ND	30.40
Sample Variance	0.2	40.5	4.8	0.001	0.000	0.54	0.77	0.008	0.000	ND	924.23
Kurtosis	-1.9	-1.3	-0.9	6.572	1.849	6.16	5.84	3.231	-1.333	ND	4.82
Skewness	-0.2	0.0	-0.5	2.475	0.127	2.43	2.33	1.490	-0.592	ND	2.22
Range	1.0	17.3	6.3	0.110	0.040	2.20	2.65	0.290	0.054	0.00	86.21
Minimum	7.7	8.2	8.9	0.000	0.000	0.00	0.55	0.000	0.000	0.00	1.09
Maximum	8.7	25.5	15.2	0.110	0.040	2.20	3.20	0.290	0.054	0.00	87.30
Count	8	8	8	8	8	8	8	7	7	0	8
Confidence Level (95.0%)	0.3	5.3	1.8	0.029	0.009	0.62	0.73	0.084	0.020	ND	25.42
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	СИ	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	15.6	5.7	952.5	5401	1643	1536	287.9	0.0	0.0	3.4	1.9
Standard Error	6.4	2.4	117.7	4127	905	184	45.4	0.0	0.0	0.8	0.0

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-07, 107th Street & Fisher Parkway

VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	15.6	5.7	952.5	5401	1643	1536	287.9	0.0	0.0	3.4	1.9
Standard Error	6.4	2.4	117.7	4127	905	184	45.4	0.0	0.0	0.8	0.0
Median	5.4	2.4	1025.0	1000	570	1676	295.0	0.0	0.0	3.4	1.9
Mode	ND	1.0	1300.0	ND	ND	ND	ND	0.0	0.0	ND	ND
Standard Deviation	18.2	6.7	332.8	10919	2560	521	128.5	0.0	0.0	1.1	0.1
Sample Variance	332.7	44.6	110735.7	119218414	6552164	271679	16510.4	0.0	0.0	1.1	0.0
Kurtosis	-0.5	1.0	-0.6	7	6	0	-0.5	ND	ND	ND	ND
Skewness	1.2	1.3	-0.8	3	2	-1	-0.1	ND	ND	ND	ND
Range	42.7	19.0	890.0	29900	7570	1489	387.0	0.0	0.0	1.5	0.1
Minimum	2.3	0.0	410.0	100	130	652	93.0	0.0	0.0	2.6	1.8
Maximum	45.0	19.0	1300.0	30000	7700	2141	480.0	0.0	0.0	4.1	1.9
Count	8	8	8	7	8	8	8	2	2	2	2
Confidence Level (95.0%)	15.2	5.6	278.2	10098	2140	436	107.4	0.0	0.0	9.5	0.6

VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
units	ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	0.0	8.0	76.50	37.50	0.8	2.1	0.0	0.0	936.9	3.1	340
Standard Error	0.0	8.0	21.50	16.50	0.3	2.1	0.0	0.0	118.5	0.3	120
Median	0.0	8.0	76.50	37.50	0.8	2.1	0.0	0.0	1013.4	3.0	340
Mode	0.0	ND	ND	ND	ND	ND	0.0	0.0	ND	ND	ND
Standard Deviation	0.0	11.3	30.41	23.33	0.4	3.0	0.0	0.0	335.2	0.8	170
Sample Variance	0.0	128.0	924.50	544.50	0.2	8.8	0.0	0.0	112372.5	0.6	28800
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.4	0.7	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.9	0.6	ND
Range	0.0	16.0	43.00	33.00	0.6	4.2	0.0	0.0	929.7	2.5	240
Minimum	0.0	0.0	55.00	21.00	0.5	0.0	0.0	0.0	367.0	2.0	220
Maximum	0.0	16.0	98.00	54.00	1.1	4.2	0.0	0.0	1296.7	4.5	460
Count	2	2	2	2	2	2	2	2	8	7	2
Confidence Level (95.0%)	0.0	101.6	273.18	209.65	3.7	26.7	0.0	0.0	280.3	0.7	1525

Summary Statistics, Underwood Creek Water Quality Data: 2004, Site UC-07, 107th Street & Fisher Parkway

VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L
STATISTICS									
Mean	ND	9.1	4.8	15.8	ND	8.7	49.9	7.8	220
Standard Error	ND	4.3	1.8	5.4	ND	1.0	4.3	0.6	20
Median	ND	4.2	3.0	9.9	ND	7.6	53.0	7.2	240
Mode	ND	ND	ND	ND	ND	ND	53.0	7.0	250
Standard Deviation	ND	12.2	5.1	15.4	ND	2.8	12.1	1.8	55
Sample Variance	ND	149.2	26.3	236.9	ND	7.8	145.6	3.1	3057
Kurtosis	ND	4.0	3.3	2.9	ND	0.4	-0.3	0.6	0
Skewness	ND	2.1	1.8	1.8	ND	1.3	-0.6	0.8	-1
Range	0.0	35.8	16.0	44.8	0.0	7.6	36.0	5.6	140
Minimum	0.0	0.7	0.0	4.2	0.0	6.4	30.0	5.4	130
Maximum	0.0	36.5	16.0	49.0	0.0	14.0	66.0	11.0	270
Count	0	8	8	8	0	8	8	8	8
Confidence Level (95.0%)	ND	10.2	4.3	12.9	ND	2.3	10.1	1.5	46

Outifinally Ot	alistics	, onaci			dunty Data.	2005, Olic				пкшау	
VARIABLE	PH	TEMP	DO	AMMONIA	NITRITE	NITRATE	TKN	PHOS	SOLPHOS	SOLSIL	CHLA
units	su	С	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/m3
STATISTICS											
Mean	8.2	18.4	11.8	0.076	0.070	0.39	1.55	0.203	0.086	ND	14.40
Standard Error	0.1	2.1	1.0	0.052	0.033	0.15	0.34	0.074	0.028	ND	4.57
Median	8.1	20.1	12.2	0.005	0.023	0.21	1.40	0.140	0.069	ND	9.08
Mode	ND	ND	ND	0.000	ND	ND	1.40	ND	0.016	ND	25.30
Standard Deviation	0.4	6.0	2.8	0.148	0.094	0.44	0.97	0.208	0.078	ND	12.91
Sample Variance	0.1	36.0	7.6	0.022	0.009	0.19	0.94	0.043	0.006	ND	166.74
Kurtosis	0.2	0.9	-1.8	5.203	1.429	0.46	-0.94	2.778	-1.642	ND	-1.00
Skewness	0.4	-1.1	-0.2	2.281	1.571	1.36	0.61	1.719	0.429	ND	0.75
Range	1.2	17.9	7.3	0.420	0.253	1.18	2.61	0.609	0.200	0.00	34.84
Minimum	7.6	6.7	8.1	0.000	0.007	0.02	0.39	0.041	0.000	0.00	1.56
Maximum	8.8	24.6	15.4	0.420	0.260	1.20	3.00	0.650	0.200	0.00	36.40
Count	8	8	8	8	8	8	8	8	8	0	8
Confidence Level (95.0%)	0.3	5.0	2.3	0.124	0.079	0.36	0.81	0.174	0.066	ND	10.80
VARIABLE	SS	VSS	TS	FECAL	ECOLIQT	SPEC	CHLOR	CD	CR	CU	NI
units	mg/L	mg/L	mg/L	CFU/100 mL	MPN/100 mL	umhos/cm	mg/L	ug/L	ug/L	ug/L	ug/L
STATISTICS											
Mean	17.2	7.2	1062.5	23661	47649	1694	332.5	0.0	5.8	7.3	4.7
Standard Error	7.8	2.9	80.7	11087	29283	145	40.8	0.0	0.0	0.0	1.1
Median	7.0	4.6	1035.0	1100	5345	1774	315.0	0.0	5.8	7.3	4.7
Mode	ND	0.0	1300.0	ND	ND	ND	ND	0.0	ND	ND	ND
Standard Deviation	22.2	8.2	228.2	29332	82825	411	115.4	0.0	ND	ND	1.6
Sample Variance	490.7	67.5	52078.6	860378681	6859904898	168606	13307.1	0.0	ND	ND	2.4
Kurtosis	0.4	0.7	-0.9	-3	5	0	-1.0	ND	ND	ND	ND
Skewness	1.4	1.3	-0.4	0	2	-1	0.0	ND	ND	ND	ND
Range	56.0	23.0	620.0	59880	239860	1157	330.0	0.0	0.0	0.0	2.2
Minimum	2.0	0.0	680.0	120	140	935	160.0	0.0	5.8	7.3	3.6
Maximum	58.0	23.0	1300.0	60000	240000	2092	490.0	0.0	5.8	7.3	5.8
			1				-	-			•
Count	8	8	8	7	8	8	8	2	1	1	2

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-07, 107th Street & Fisher Parkway

ounnary otatistics, one											
VARIABLE	PB	ZN	CA	MG	AG	AS	SE	HG	DS	LFC	HARD
units	s ug/L	ug/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	mg/L	CFU/100 mL	mg/L
STATISTICS											
Mean	1.1	75.0	79.00	31.50	0.9	0.0	5.0	0.0	1045.3	3.4	325
Standard Error	1.1	55.0	31.00	14.50	0.0	0.0	5.0	0.0	85.9	0.5	135
Median	1.1	75.0	79.00	31.50	0.9	0.0	5.0	0.0	1032.6	3.0	325
Mode	ND	ND	ND	ND	ND	0.0	ND	0.0	ND	ND	ND
Standard Deviation	1.6	77.8	43.84	20.51	0.0	0.0	7.1	0.0	243.1	1.3	191
Sample Variance	2.4	6050.0	1922.00	420.50	0.0	0.0	50.0	0.0	59095.7	1.6	36450
Kurtosis	ND	ND	ND	ND	ND	ND	ND	ND	-0.6	-2.6	ND
Skewness	ND	ND	ND	ND	ND	ND	ND	ND	-0.5	0.2	ND
Range	2.2	110.0	62.00	29.00	0.1	0.0	10.0	0.0	674.1	2.7	270
Minimum	0.0	20.0	48.00	17.00	0.9	0.0	0.0	0.0	622.0	2.1	190
Maximum	2.2	130.0	110.00	46.00	0.9	0.0	10.0	0.0	1296.1	4.8	460
Count	2	2	2	2	2	2	2	2	8	7	2
Confidence Level (95.0%)	14.0	698.8	393.89	184.24	0.4	0.0	63.5	0.0	203.2	1.2	1715
		TUDD	0005	00000	NUTE	TNOO	TN/0	TNDOO	TALK	1	
VARIABLE	SCHII	TURB	BOD5	BOD20	IXLITE	TNOC	TNIC	TNDOC	TALK	-	
units	meters	NTU	mg/L	mg/L	meters	mg/L	mg/L	mg/L	mg/L		
						0	-		-		
STATISTICS						0					
STATISTICS Mean	ND	13.5	7.1	14.1	ND	13.3	51.5	11.2	212		
	ND ND	7.1	2.3	5.3	ND	13.3 3.3	8.5	3.0	23		
Mean Standard Error Median						13.3					
Mean Standard Error	ND	7.1	2.3	5.3	ND	13.3 3.3	8.5	3.0	23	-	
Mean Standard Error Median	ND ND	7.1 3.5	2.3 4.5	5.3 9.0	ND ND	13.3 3.3 11.0	8.5 55.5	3.0 10.0	23 235	-	
Mean Standard Error Median Mode Standard Deviation Sample Variance	ND ND ND	7.1 3.5 ND	2.3 4.5 16.0	5.3 9.0 ND	ND ND ND	13.3 3.3 11.0 ND	8.5 55.5 ND	3.0 10.0 10.0	23 235 260		
Mean Standard Error Median Mode Standard Deviation	ND ND ND ND	7.1 3.5 ND 20.2	2.3 4.5 16.0 6.4	5.3 9.0 ND 15.1	ND ND ND ND	13.3 3.3 11.0 ND 8.7	8.5 55.5 ND 20.7	3.0 10.0 10.0 8.0	23 235 260 65		
Mean Standard Error Median Mode Standard Deviation Sample Variance	ND ND ND ND ND	7.1 3.5 ND 20.2 408.6	2.3 4.5 16.0 6.4 41.0	5.3 9.0 ND 15.1 227.2	ND ND ND ND ND	13.3 3.3 11.0 ND 8.7 75.5	8.5 55.5 ND 20.7 430.3	3.0 10.0 10.0 8.0 63.6	23 235 260 65 4200		
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	ND ND ND ND ND ND	7.1 3.5 ND 20.2 408.6 2.6	2.3 4.5 16.0 6.4 41.0 -1.5	5.3 9.0 ND 15.1 227.2 6.3	ND ND ND ND ND ND	13.3 3.3 11.0 ND 8.7 75.5 3.2	8.5 55.5 ND 20.7 430.3 2.1	3.0 10.0 8.0 63.6 2.5	23 235 260 65 4200 4		
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness	ND ND ND ND ND ND ND	7.1 3.5 ND 20.2 408.6 2.6 1.9	2.3 4.5 16.0 6.4 41.0 -1.5 0.6	5.3 9.0 ND 15.1 227.2 6.3 2.4	ND ND ND ND ND ND ND	13.3 3.3 11.0 ND 8.7 75.5 3.2 1.7	8.5 55.5 ND 20.7 430.3 2.1 -1.1	3.0 10.0 8.0 63.6 2.5 1.4	23 235 260 65 4200 4 -2		
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range	ND ND ND ND ND ND 0.0	7.1 3.5 ND 20.2 408.6 2.6 1.9 55.0	2.3 4.5 16.0 6.4 41.0 -1.5 0.6 16.0	5.3 9.0 ND 15.1 227.2 6.3 2.4 45.7	ND ND ND ND ND ND 0.0	13.3 3.3 11.0 ND 8.7 75.5 3.2 1.7 25.6	8.5 55.5 ND 20.7 430.3 2.1 -1.1 62.0	3.0 10.0 8.0 63.6 2.5 1.4 23.9	23 235 260 65 4200 4 -2 195		
Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum	ND ND ND ND ND ND 0.0	7.1 3.5 ND 20.2 408.6 2.6 1.9 55.0 1.7	2.3 4.5 16.0 6.4 41.0 -1.5 0.6 16.0 0.0	5.3 9.0 ND 15.1 227.2 6.3 2.4 45.7 4.3	ND ND ND ND ND ND ND 0.0 0.0	13.3 3.3 11.0 ND 8.7 75.5 3.2 1.7 25.6 5.4	8.5 55.5 ND 20.7 430.3 2.1 -1.1 62.0 15.0	3.0 10.0 8.0 63.6 2.5 1.4 23.9 3.1	23 235 260 65 4200 4 -2 195 65		

Summary Statistics, Underwood Creek Water Quality Data: 2005, Site UC-07, 107th Street & Fisher Parkway

APPENDIX F: WQI Statistical Comparison of UC Sites Utilizing an Independent T-test

(Means are calculated using all Water Quality Final Index data (2003-2005)

(Red indicates that a statistically significant difference exists)

T-test comparing	UC-01 to UC-02
------------------	----------------

FNLNDX

45.01744

30.96160

2.497097

46 0.016163

	T-tests; Grou Group 1: UC		FE (UC subir	ndex	values A 03 (04 05 with pr	ecip)				
	Group 2: UC										
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р
Variable	UC-01S	UC-02S				UC-01S	UC-02S	UC-01S	UC-02S	Variances	Variances
FNLNDX	45.01744	49.57371	-0.703996	45	0.485062	24	23	22.46504	21.87785	1.054399	0.903661
[-test comp	aring UC-01	to UC-03									
	T-tests; Grou Group 1: UC Group 2: UC	-01Š	TE (UC subi	ndex	values A 03	04 05 with p	recip)				
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р
Variable	UC-01S	UC-03S				UC-01S	UC-03S	UC-01S	UC-03S	Variances	Variances
FNLNDX	45.01744	65.93702	-3.37151	46	0.001523	24	24	22.46504	20.47720	1.203576	0.660506
Γ-test comp	T-tests; Grou Group 1: UC Group 2: UC	ıping: SI -01S -04S			values A 03						
Γ-test comp Variable	T-tests; Grou Group 1: UC Group 2: UC Mean	ıping: SI -01S	TE (UC subi	ndex df	values A 03	Valid N	Valid N	Std.Dev. UC-01S	Std.Dev. UC-04S	F-ratio Variances	p Variances
	T-tests; Grou Group 1: UC Group 2: UC	uping: Sl -01S -04S <u>Mean</u>	(Std.Dev. UC-01S 22.46504	Std.Dev. UC-04S 16.64429		p Variances 0.157844
Variable FNLNDX	T-tests; Grou Group 1: UC Group 2: UC Mean UC-01S 45.01744	uping: S l' -01S -04S <u>Mean UC-04S</u> 55.18665	t-value	df	р	Valid N UC-01S	Valid N UC-04S	UC-01S	UC-04S	Variances	Variances
Variable FNLNDX	T-tests; Grou Group 1: UC Group 2: UC Mean UC-01S	uping: SI -01S -04S <u>Mean UC-04S</u> 55.18665 to UC-05 uping: SI -01S	t-value -1.78184	df 46	р	Valid N UC-01S 24	Valid N UC-04S 24	UC-01S	UC-04S	Variances	Variances

24

24 22.46504

15.99195

1.973384

0.110176

-test comp	oaring UC-01	to UC-06									
	T-tests; Grou Group 1: UC		TE (UC subi	ndex	values A 03	04 05 with p	recip)				
	Group 2: UC-06S										
Variable	Mean UC-01S	Mean UC-06S	t-value	df	р	Valid N UC-01S	Valid N UC-06S	Std.Dev. UC-01S	Std.Dev. UC-06S	F-ratio Variances	p Variances
FNLNDX	45.01744	55.41910	-1.87120	46	0.067685	24	24	22.46504	15.39249	2.130084	0.076205
-test comp	oaring UC-01	to UC-07									
	T-tests; Grou Group 1: UC Group 2: UC	-01S	TE (UC subi	ndex	values A 03	04 05 with p	recip)				
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р
Variable	UC-01S	UC-07S				UC-01S	UC-07S	UC-01S	UC-07S	Variances	Variances
FNLNDX	45.01744	53.97831	-1.35050	46	0.183462	24	24	22.46504	23.49353	1.093659	0.831852
	T-tests; Grouping: SITE (UC subindex values A 03 04 05 with precip) Group 1: UC-02S Group 2: UC-03S										
Variable	Mean UC-02S	Mean UC-03S	t-value	df	р	Valid N UC-02S	Valid N UC-03S	Std.Dev. UC-02S	Std.Dev. UC-03S	F-ratio Variances	p Variances
FNLNDX	49.57371	65.93702	-2.64849	45	0.011111	23	24	21.87785	20.47720	1.141480	0.753918
-test comp	oaring UC-02	to UC-04									
	T-tests; Grou Group 1: UC Group 2: UC	-02S	TE (UC subi	ndex	values A 03 (04 05 with pi	recip)				
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р
Variable	UC-02S	UC-04S				UC-02S	UC-04S	UC-02S	UC-04S	Variances	Variances
FNLNDX	49.57371	55.18665	-0.992545	45	0.326239	23	24	21.87785	16.64429	1.727743	0.200491
-test comp	paring UC-02										
	T-tests; Grou Group 1: UC Group 2: UC	-02S	TE (UC subi	index	values A 03	04 05 with p	recip)				
			4 yeakya	df	n	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	n
Variable	Mean UC-02S	Mean UC-05S	t-value	u	р	UC-02S	UC-05S	UC-02S	UC-05S	Variances	p Variances

Γ-test comp	oaring UC-02	to UC-06											
	T-tests; Grou		TE (UC sub	inde>	k values A 03	04 05 with p	recip)						
	Group 1: UC-02S												
	Group 2: UC-06S Mean Mean t-value df p Valid N Valid N Std.Dev. Std.Dev. F-ratio										-		
Variable	UC-02S	Mean UC-06S	t-value	ar	р	UC-02S	Valid N UC-06S	UC-02S	UC-06S	F-ratio Variances	p Variances		
FNLNDX	49.57371	55.41910	-1.06306	45	0.293425	23	24		15.39249	2.020188	0.101034		
-test comp	aring UC-02	to UC-07				1		1		1			
	T-tests; Grou	uping: Sl	TE (UC subi	ndex	values A 03	04 05 with p	recip)						
	Group 1: UC-02S												
	Group 2: UC			_									
.,	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р		
Variable	UC-02S	UC-07S				UC-02S	UC-07S	UC-02S	UC-07S	Variances	Variances		
FNLNDX	49.57371	53.97831	-0.664441	45	0.509799	23	24	21.87785	23.49353	1.153153	0.740876		
-test comp	paring UC-03												
	T-tests; Grou		TE (UC sub	inde>	values A 03	04 05 with p	recip)						
	Group 1: UC												
	Group 2: UC	-04S						,	,				
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р		
Variable	UC-03S	UC-04S				UC-03S	UC-04S	UC-03S	UC-04S	Variances	Variances		
FNLNDX	65.93702	55.18665	1.995794	46	0.051897	24	24	20.47720	16.64429	1.513598	0.327223		
-test comp	paring UC-03												
	T-tests; Grou		TE (UC sub	inde	k values A 03	04 05 with p	recip)						
	Group 1: UC												
	Group 2: UC			_									
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р		
Variable	UC-03S	UC-05S				UC-03S	UC-05S	UC-03S	UC-05S	Variances	Variances		
FNLNDX	65.93702	30.96160	6.594744	46	0.000000	24	24	20.47720	15.99195	1.639600	0.243205		
-test comp	paring UC-03												
	T-tests; Grou		TE (UC sub	inde	k values A 03	04 05 with p	recip)						
	Group 1: UC												
	Group 2: UC												
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р		
Variable	UC-03S	UC-06S				UC-03S	UC-06S	UC-03S	UC-06S	Variances	Variances		
FNLNDX	65.93702	55.41910	2.011420	46	0.050161	24	24	20.47720	15.39249	1.769796	0.178573		

T-test comp	aring UC-03	to UC-07											
	T-tests; Grou Group 1: UC		TE (UC sub	inde>	values A 03	04 05 with p	recip)						
	Group 2: UC-07S												
Variable	Mean UC-03S	Mean UC-07S	t-value	df	р	Valid N UC-03S	Valid N UC-07S	Std.Dev. UC-03S	Std.Dev. UC-07S	F-ratio Variances	p Variances		
FNLNDX	65.93702	53.97831	1.879845	46	0.066471	24	24	20.47720	23.49353	1.316302	0.515125		
T-test comp	aring UC-04	to UC-05											
	T-tests; Grou Group 1: UC Group 2: UC	-04S	TE (UC sub	inde>	values A 03	04 05 with p	recip)						
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р		
Variable	UC-04S	UC-05S				UC-04S	UC-05S	UC-04S	UC-05S	Variances	Variances		
FNLNDX	55.18665	30.96160	5.141602	46	0.000005	24	24	16.64429	15.99195	1.083247	0.849586		
-test comp	aring UC-04												
	T-tests; Grouping: SITE (UC subindex values A 03 04 05 with precip) Group 1: UC-04S Group 2: UC-06S												
Variable	Mean UC-04S	Mean UC-06S	t-value	df	р	Valid N UC-04S	Valid N UC-06S	Std.Dev. UC-04S	Std.Dev. UC-06S	F-ratio Variances	p Variances		
FNLNDX	55.18665	55.41910	-0.050230	46	6 0.960157	24	24	16.64429	15.39249	1.169264	0.710836		
-test comp	aring UC-04	to UC-07											
	T-tests; Grouping: SITE (UC subindex values A 03 04 05 with precip) Group 1: UC-04S Group 2: UC-07S												
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р		
Variable	UC-04S	UC-07S				UC-04S	UC-07S	UC-04S	UC-07S	Variances	Variances		
FNLNDX	55.18665	53.97831	0.205601	46	0.838010	24	24	16.64429	23.49353	1.992352	0.105347		
-test comp	aring UC-05												
	T-tests; Grouping: SITE (UC subindex values A 03 04 05 with precip) Group 1: UC-05S												
		-05S	TE (UC sub	index	values A 03	04 00 with p							
Variable	Group 1: UC	-05S	TE (UC sub	df	p	Valid N UC-05S	Valid N UC-06S	Std.Dev. UC-05S	Std.Dev. UC-06S	F-ratio Variances	p Variances		

T-test comparing UC-05 to UC-07

	T-tests; Grouping: SITE (UC subindex values A 03 04 05 with precip) Group 1: UC-05S Group 2: UC-07S											
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р	
Variable	UC-05S	UC-07S				UC-05S	UC-07S	UC-05S	UC-07S	Variances	Variances	
FNLNDX	30.96160	53.97831	-3.96759	46	0.000252	24	24	15.99195	23.49353	2.158209	0.071358	
T-test compa	T-test comparing UC-06 to UC-07											
	T-tests; Grouping: SITE (UC subindex values A 03 04 05 with precip) Group 1: UC-06S Group 2: UC-07S											
	Mean	Mean	t-value	df	р	Valid N	Valid N	Std.Dev.	Std.Dev.	F-ratio	р	
Variable	UC-06S	UC-07S				UC-06S	UC-07S	UC-06S	UC-07S	Variances	Variances	
FNLNDX	55.41910	53.97831	0.251306	46	0.802697	24	24	15.39249	23.49353	2.329586	0.047979	